• Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Boehm, M. T., , and S. Lee, 2003: The implications of tropical Rossby waves for tropical tropopause cirrus formation and for the equatorial upwelling of the Brewer–Dobson circulation. J. Atmos. Sci., 60 , 247261.

    • Search Google Scholar
    • Export Citation
  • Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75 , 351363.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., , and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410 , 799802.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Climate Dyn., 27 , 727741.

    • Search Google Scholar
    • Export Citation
  • Chae, H. C., , and S. C. Sherwood, 2007: Annual temperature cycle of the tropical tropopause: A simple model study. J. Geophys. Res., 112 , D19111. doi:10.1029/2006JD007956.

    • Search Google Scholar
    • Export Citation
  • Christy, J. R., , and S. J. Drouilhet Jr., 1994: Variability in daily, zonal mean lower-stratospheric temperatures. J. Climate, 7 , 106120.

    • Search Google Scholar
    • Export Citation
  • Deckert, R., , and M. Dameris, 2008: Higher tropical SSTs strengthen the tropical upwelling via deep convection. Geophys. Res. Lett., 35 , L10813. doi:10.1029/2008GL033719.

    • Search Google Scholar
    • Export Citation
  • Dhomse, S., , M. Weber, , and J. Burrows, 2008: The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor. Atmos. Chem. Phys., 8 , 471480.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1956: Origin and distribution of polyatomic molecules in the atmosphere. Proc. Roy. Soc. London, 236A , 187193.

  • Eichelberger, S. J., , and D. L. Hartmann, 2005: Changes in the strength of the Brewer–Dobson circulation in a simple AGCM. Geophys. Res. Lett., 32 , L15807. doi:10.1029/2005GL022924.

    • Search Google Scholar
    • Export Citation
  • Folkins, I., , P. Bernath, , C. Boone, , G. Lesins, , N. Livesey, , A. M. Thompson, , K. Walker, , and J. C. Witte, 2006: Seasonal cycles of O3, CO, and convective outflow at the tropical tropopause. Geophys. Res. Lett., 33 , L16802. doi:10.1029/2006GL026602.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , C. M. Johanson, , J. M. Wallace, , and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312 , 1179.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , S. Solomon, , and P. Lin, 2009: On the seasonal dependence of tropical lower-stratospheric temperature trends. Atmos. Chem. Phys. Discuss., 9 , 2181921846.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , and W. J. Randel, 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65 , 27312739.

    • Search Google Scholar
    • Export Citation
  • Geller, M. A., , T. Zhou, , and K. Hamilton, 2008: Morphology of tropical upwelling in the lower stratosphere. J. Atmos. Sci., 65 , 23602374.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., , and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional and other forces. J. Atmos. Sci., 44 , 828841.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., , C. J. Marks, , M. E. McIntyre, , T. G. Shepherd, , and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48 , 651678.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 535 pp.

  • Holton, J. R., , P. H. Haynes, , M. E. McIntyre, , A. R. Douglass, , R. B. Rood, , and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33 , 403439.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., 1992: General circulation diagnosis in the pressure-isentrope hybrid vertical coordinate. J. Meteor. Soc. Japan, 70 , 673687.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kerr-Munslow, A. M., , and W. A. Norton, 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part I: ECMWF analyses. J. Atmos. Sci., 63 , 14101419.

    • Search Google Scholar
    • Export Citation
  • Lanzante, J., 2009: Comment on “Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection” by Karen H. Rosenlof and George C. Reid. J. Geophys. Res., 114 , D12104. doi:10.1029/2008JD010542.

    • Search Google Scholar
    • Export Citation
  • Li, F., , J. Austin, , and J. Wilson, 2008: The strength of the Brewer–Dobson circulation in a changing climate: Coupled chemistry–climate model simulations. J. Climate, 21 , 4057.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., , K. H. Rosenlof, , J. R. Holton, , R. S. Harwood, , and J. W. Waters, 1995: Seasonal variations of water vapor in the tropical lower stratosphere. Geophys. Res. Lett., 22 , 10931096.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., and Coauthors, 1996: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101 , 39894006.

    • Search Google Scholar
    • Export Citation
  • Niwano, M., , K. Yamazaki, , and M. Shiotani, 2003: Seasonal and QBO variations of ascent rate in the tropical lower stratosphere as inferred from UARS HALOE trace gas data. J. Geophys. Res., 108 , 4794. doi:10.1029/2003JD003871.

    • Search Google Scholar
    • Export Citation
  • Norton, W. A., 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part II: Model results. J. Atmos. Sci., 63 , 14201431.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., , and J. Eluszkiewicz, 1999: The Brewer–Dobson circulation: Dynamics of the tropical upwelling. J. Atmos. Sci., 56 , 868890.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , R. Garcia, , and F. Wu, 2002a: Time-dependent upwelling in the tropical lower stratosphere estimated from the zonal-mean momentum budget. J. Atmos. Sci., 59 , 21412152.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , F. Wu, , and R. Stolarski, 2002b: Changes in column ozone correlated with the stratospheric EP flux. J. Meteor. Soc. Japan, 80 , 849862.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , M. Park, , F. Wu, , and N. Livesey, 2007: A large annual cycle in ozone above the tropical tropopause linked to the Brewer–Dobson circulation. J. Atmos. Sci., 64 , 44794488.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , R. Garcia, , and F. Wu, 2008: Dynamical balances and tropical stratospheric upwelling. J. Atmos. Sci., 65 , 35843595.

  • Reed, R. J., , and C. L. Vlcek, 1969: The annual temperature variation in the lower tropical stratosphere. J. Atmos. Sci., 26 , 163167.

  • Rosenlof, K. H., 1995: Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res., 100 , 51735191.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., , and G. C. Reid, 2008: Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection. J. Geophys. Res., 113 , D06107. doi:10.1029/2007JD009109.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., , and G. C. Reid, 2009: Reply to comment by John R. Lanzante on “Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection”. J. Geophys. Res., 114 , D12105. doi:10.1029/2008JD011265.

    • Search Google Scholar
    • Export Citation
  • Russell III, J. M., and Coauthors, 1993: The Halogen Occultation Experiment. J. Geophys. Res., 98 , 1077710797.

  • Salby, M. L., , and P. F. Callaghan, 2002: Interannual changes of the stratospheric circulation: Relationship to ozone and tropospheric structure. J. Climate, 15 , 36733685.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., , B. N. Duncan, , A. R. Douglass, , J. Waters, , N. Livesey, , W. Read, , and M. Filipiak, 2006: The carbon monoxide tape recorder. Geophys. Res. Lett., 33 , L12811. doi:10.1029/2006GL026178.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., and Coauthors, 2008: QBO and annual cycle variations in tropical lower stratosphere trace gases from HALOE and Aura MLS observations. J. Geophys. Res., 113 , D05301. doi:10.1029/2007JD008678.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., 2002: Wave-driven mean tropical upwelling in the lower stratosphere. J. Atmos. Sci., 59 , 27452759.

  • Semeniuk, K., , and T. G. Shepherd, 2001: Mechanisms for tropical upwelling in the stratosphere. J. Atmos. Sci., 58 , 30973115.

  • Shine, K. P., and Coauthors, 2003: A comparison of model-simulated trends in stratospheric temperatures. Quart. J. Roy. Meteor. Soc., 129A , 15651588.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., , P. C. Siegmund, , E. Manzini, , and H. Kelder, 2004: A simulation of the separate climate effects of middle-atmospheric and tropospheric CO2 doubling. J. Climate, 17 , 23522367.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21 , 22832296.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., , J. R. Christy, , and N. C. Grody, 1990: Global atmospheric temperature monitoring with satellite microwave measurements: Method and results 1979–84. J. Climate, 3 , 11111128.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and S. Solomon, 2005: Recent stratospheric climate trends as evidenced in radiosonde data: Global structure and tropospheric linkages. J. Climate, 18 , 47854795.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Yulaeva, E., , J. R. Holton, , and J. M. Wallace, 1994: On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci., 51 , 169174.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., , M. A. Geller, , and K. Hamilton, 2006: The roles of the Hadley circulation and downward control in tropical upwelling. J. Atmos. Sci., 63 , 27402757.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 1
PDF Downloads 8 8 0

To What Extent Does High-Latitude Wave Forcing Drive Tropical Upwelling in the Brewer–Dobson Circulation?

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The causes of the annual cycle and nonseasonal variability in the globally averaged, equator-to-pole Brewer–Dobson circulation (BDC; defined here as the equatorially symmetric component of the Lagrangian-mean meridional circulation) are investigated based on zonally averaged, lower-stratospheric temperature data from satellite-borne Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). Time-varying vertical velocities in the BDC are inferred from departures of the meridional temperature profiles from the respective radiative equilibrium temperature profiles. Equatorward of ∼45°N/S, the annual-mean profile of lower-stratospheric temperature and the seasonal and nonseasonal variations about it project almost exclusively onto the equatorially symmetric component. The climatological-mean annual cycle accounts for nearly 90% of the month-to-month variance of the equatorially symmetric component of the temperature field; January/February is colder than July/August equatorward of ∼45°N/S and warmer than July/August poleward of that latitude. The equator-to-subpolar temperature contrast roughly doubles from July/August to January/February, implying an approximate doubling of the strength of the BDC. The nonseasonal variability is dominated by a similar pattern. Tropical upwelling in the BDC, as inferred from of the temperature field, varies in response to variations in eddy heat fluxes at high latitudes with comparable strength on the intraseasonal and interannual time scales; it does not appear to be correlated with equatorial tropospheric planetary wave activity or with variations in wave forcing in subtropical lower stratosphere. It is concluded that high-latitude wave forcing plays an important role in modulating tropical upwelling in the BDC across a wide range of frequencies.

Corresponding author address: Rei Ueyama, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. Email: rei@atmos.washington.edu

Abstract

The causes of the annual cycle and nonseasonal variability in the globally averaged, equator-to-pole Brewer–Dobson circulation (BDC; defined here as the equatorially symmetric component of the Lagrangian-mean meridional circulation) are investigated based on zonally averaged, lower-stratospheric temperature data from satellite-borne Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). Time-varying vertical velocities in the BDC are inferred from departures of the meridional temperature profiles from the respective radiative equilibrium temperature profiles. Equatorward of ∼45°N/S, the annual-mean profile of lower-stratospheric temperature and the seasonal and nonseasonal variations about it project almost exclusively onto the equatorially symmetric component. The climatological-mean annual cycle accounts for nearly 90% of the month-to-month variance of the equatorially symmetric component of the temperature field; January/February is colder than July/August equatorward of ∼45°N/S and warmer than July/August poleward of that latitude. The equator-to-subpolar temperature contrast roughly doubles from July/August to January/February, implying an approximate doubling of the strength of the BDC. The nonseasonal variability is dominated by a similar pattern. Tropical upwelling in the BDC, as inferred from of the temperature field, varies in response to variations in eddy heat fluxes at high latitudes with comparable strength on the intraseasonal and interannual time scales; it does not appear to be correlated with equatorial tropospheric planetary wave activity or with variations in wave forcing in subtropical lower stratosphere. It is concluded that high-latitude wave forcing plays an important role in modulating tropical upwelling in the BDC across a wide range of frequencies.

Corresponding author address: Rei Ueyama, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. Email: rei@atmos.washington.edu

Save