• Alexander, S. P., , T. Tsuda, , Y. Kawatani, , and M. Takahashi, 2008: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions. J. Geophys. Res., 113 , D24115. doi:10.1029/2008JD010039.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Arakawa, A., , and W. H. Schubert, 1974: Interactions of cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 34 , 674701.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39 , 179229.

  • Dunkerton, T. J., 1991: Nonlinear propagation of zonal winds in an atmosphere with Newtonian cooling and equatorial wavedriving. J. Atmos. Sci., 48 , 236263.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102 , 2605326076.

  • Dunkerton, T. J., 2000: Midwinter deceleration of the subtropical mesospheric jet and interannual variability of the high-latitude flow in UKMO analyses. J. Atmos. Sci., 57 , 38383855.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., , and D. P. Delisi, 1985: Climatology of the equatorial lower stratosphere. J. Atmos. Sci., 42 , 376396.

  • Emori, S., , T. Nozawa, , A. Numaguti, , and I. Uno, 2001: Importance of cumulus parameterization for precipitation simulation over East Asia in June. J. Meteor. Soc. Japan, 79 , 939947.

    • Search Google Scholar
    • Export Citation
  • Ern, M., , and P. Preusse, 2009: Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere. Geophys. Res. Lett., 36 , L21801. doi:10.1029/2009GL040493.

    • Search Google Scholar
    • Export Citation
  • Ern, M., , P. Preusse, , M. Krebsbach, , M. G. Mlynczak, , and J. M. Russell III, 2008: Equatorial wave analysis from SABER and ECMWF temperatures. Atmos. Chem. Phys., 8 , 845869.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., , E. Manzini, , and E. Roechner, 2002: Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29 , 1245. doi:10.1029/2002GL014756.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., , E. Manzini, , E. Roechner, , M. Esch, , and L. Bengtsson, 2006: Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J. Climate, 19 , 38823901.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1984: Mean wind evolution through the quasi-biennial cycle of the tropical lower stratosphere. J. Atmos. Sci., 41 , 21132125.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., , R. J. Wilson, , and R. Hemler, 1999: Middle atmosphere simulated with high vertical and horizontal resolution versions of a GCM: Improvements in the cold pole bias and generation of a QBO-like oscillation in the tropics. J. Atmos. Sci., 56 , 38293846.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., , R. J. Wilson, , and R. Hemler, 2001: Spontaneous stratospheric QBO-like oscillations simulated by the GFDL SKYHI general circulation model. J. Atmos. Sci., 58 , 32713292.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997: Doppler-spread parameterization of gravity wave momentum deposition in the middle atmosphere. 2. Broad and quasi-monochromatic spectra, and implementation. J. Atmos. Terr. Phys., 59 , 387400.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29 , 10761080.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., , and S. Yoden, 1998: Wave–mean flow interaction associated with a QBO-like oscillation simulated in a simplified GCM. J. Atmos. Sci., 55 , 502526.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., and Coauthors, 2003: Tropical cumulus convection and upward-propagating waves in middle-atmospheric GCMs. J. Atmos. Sci., 60 , 27652782.

    • Search Google Scholar
    • Export Citation
  • K-1 Model Developers, 2004: K-1 coupled GCM (MIROC) description. K-1 Tech. Rep. 1, University of Tokyo, 34 pp.

  • Kawatani, Y., , S. K. Dhaka, , M. Takahashi, , and T. Tsuda, 2003: Large potential energy of gravity waves over a smooth surface with little convection: Simulation and observation. Geophys. Res. Lett., 30 , 1438. doi:10.1029/2003GL016960.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., , M. Takahashi, , and T. Tokioka, 2004: Gravity waves around the subtropical jet of the southern winter in an atmospheric general circulation model. Geophys. Res. Lett., 31 , L22109. doi:10.1029/2004GL020794.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., , K. Tsuji, , and M. Takahashi, 2005: Zonally non-uniform distribution of equatorial gravity waves in an atmospheric general circulation model. Geophys. Res. Lett., 32 , L23815. doi:10.1029/2005GL024068.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., , M. Takahashi, , K. Sato, , S. P. Alexander, , and T. Tsuda, 2009: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: AGCM simulation of sources and propagation. J. Geophys. Res., 114 , D01102. doi:10.1029/2008JD010374.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., , K. Sato, , T. J. Dunkerton, , S. Watanabe, , S. Miyahara, , and M. Takahashi, 2010: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part II: Three-dimensional distribution of wave forcing. J. Atmos. Sci., 67 , 981997.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , M. C. Wheeler, , P. T. Haertel, , K. H. Straub, , and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47 , RG2003. doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Lin, J-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19 , 26652690.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and J. R. Holton, 1968: A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25 , 10951107.

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2543.

  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., and Coauthors, 1996: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101 , 39894006.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., , T. J. Dunkerton, , M. E. McIntyre, , E. A. Ray, , P. H. Haynes, , and J. M. Russell III, 1998: Vertical velocity, vertical diffusion, and dilution by midlatitude air in the tropical lower stratosphere. J. Geophys. Res., 103 , (D8). 86518666.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66 , 823839.

    • Search Google Scholar
    • Export Citation
  • Naujokat, B., 1986: An update of the observed quasi-biennial oscillation of the stratospheric wind over the tropics. J. Atmos. Sci., 43 , 18731877.

    • Search Google Scholar
    • Export Citation
  • Ortland, D. A., 1997: Rossby wave propagation into the tropical stratosphere observed by the high resolution Doppler imager. Geophys. Res. Lett., 24 , 19992002.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., 1997: Interaction of extratropical Rossby waves with eastward wind quasi-biennial oscillation winds. J. Geophys. Res., 102 , 1946119469.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., , and R. C. Bell, 1982: A model of the quasi-biennial oscillation on an equatorial beta-plane. Quart. J. Roy. Meteor. Soc., 108 , 335352.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , and T. J. Dunkerton, 1997: Estimates of momentum flux associated with equatorial Kelvin and gravity waves. J. Geophys. Res., 102 , 2624726261.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , T. Kumakura, , and M. Takahashi, 1999: Gravity waves appearing in a high-resolution GCM simulation. J. Atmos. Sci., 56 , 10051018.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , M. Yamamori, , S. Ogino, , N. Takahashi, , Y. Tomikawa, , and T. Yamanouchi, 2003: A meridional scan of the stratospheric gravity wave field over the ocean in 2001 (MeSSO2001). J. Geophys. Res., 108 , 4491. doi:10.1029/2002JD003219.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , S. Watanabe, , Y. Kawatani, , Y. Tomikawa, , K. Miyazaki, , and M. Takahashi, 2009: On the origins of mesospheric gravity waves. Geophys. Res. Lett., 36 , L19801. doi:10.1029/2009GL039908.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., , A. R. Douglass, , R. S. Stolarski, , S. Pawson, , S. E. Strahan, , and W. Read, 2008: Comparison of lower stratospheric tropical mean vertical velocities. J. Geophys. Res., 113 , D24109. doi:10.1029/2008JD010221.

    • Search Google Scholar
    • Export Citation
  • Shibata, K., , and M. Deushi, 2005a: Partitioning between resolved wave forcing and unresolved gravity wave forcing to the quasi-biennial oscillation as revealed with a coupled chemistry–climate model. Geophys. Res. Lett., 32 , L12820. doi:10.1029/2005GL022885.

    • Search Google Scholar
    • Export Citation
  • Shibata, K., , and M. Deushi, 2005b: Radiative effect of ozone on the quasi-biennial oscillation in the equatorial stratosphere. Geophys. Res. Lett., 32 , L24802. doi:10.1029/2005GL023433.

    • Search Google Scholar
    • Export Citation
  • Suzuki, T., , Y. N. Takayabu, , and S. Emori, 2006: Coupling mechanisms between equatorial waves and cumulus convection in an AGCM. Dyn. Atmos. Oceans, 42 , 81106. doi:10.1016/j.dynatmoce.2006.02.004.

    • Search Google Scholar
    • Export Citation
  • Takahashi, M., 1996: Simulation of the stratospheric quasi-biennial oscillation using a general circulation model. Geophys. Res. Lett., 23 , 661664.

    • Search Google Scholar
    • Export Citation
  • Takahashi, M., 1999: Simulation of the quasi-biennial oscillation in a general circulation model. Geophys. Res. Lett., 26 , 13071310.

  • Takahashi, M., , and B. A. Boville, 1992: A three-dimensional simulation of the equatorial quasi-biennial oscillation. J. Atmos. Sci., 49 , 10201035.

    • Search Google Scholar
    • Export Citation
  • Tomikawa, Y., , K. Sato, , S. Watanabe, , Y. Kawatani, , K. Miyazaki, , and M. Takahashi, 2008: Wintertime temperature maximum at the subtropical stratopause in a T213L256 GCM. J. Geophys. Res., 113 , D17117. doi:10.1029/2008JD009786.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Wallace, J. M., , and V. E. Kousky, 1968: Observation evidence of Kelvin waves in the tropical stratosphere. J. Atmos. Sci., 25 , 900907.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., 2008: Constraints on a non-orographic gravity wave drag parameterization using a gravity wave resolving general circulation model. SOLA, 4 , 6164.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., , and M. Takahashi, 2005: Kelvin waves and ozone Kelvin waves in the quasi-biennial oscillation and semiannual oscillation: A simulation by a high- resolution chemistry-coupled general circulation model. J. Geophys. Res., 110 , D18303. doi:10.1029/2004JD005424.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., , K. Sato, , and M. Takahashi, 2006: A general circulation model study of orographic gravity waves over Antarctica excited by katabatic winds. J. Geophys. Res., 111 , D18104. doi:10.1029/2005JD006851.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., , Y. Kawatani, , Y. Tomikawa, , K. Miyazaki, , M. Takahashi, , and K. Sato, 2008: General aspects of a T213L256 middle atmosphere general circulation model. J. Geophys. Res., 113 , D12110. doi:10.1029/2008JD010026.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., , Y. Tomikawa, , K. Sato, , Y. Kawatani, , K. Miyazaki, , and M. Takahashi, 2009: Simulation of the eastward 4-day wave in the Antarctic winter mesosphere using a gravity wave resolving general circulation model. J. Geophys. Res., 114 , D16111. doi:10.1029/2008JD011636.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , G. N. Kiladis, , and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57 , 613640.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , and T. Maruyama, 1966: Stratospheric wave disturbances propagating over the equatorial Pacific. J. Meteor. Soc. Japan, 44 , 291294.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 97 97 28
PDF Downloads 56 56 19

The Roles of Equatorial Trapped Waves and Internal Inertia–Gravity Waves in Driving the Quasi-Biennial Oscillation. Part I: Zonal Mean Wave Forcing

View More View Less
  • 1 Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
  • 2 Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Tokyo, Japan
  • 3 NorthWest Research Associates, Redmond, Washington
  • 4 Department of Earth and Planetary Sciences, Graduate School of Sciences, Kyushu University, Fukuoka, Japan
  • 5 Center for Climate System Research, University of Tokyo, Kashiwa, Japan
© Get Permissions
Restricted access

Abstract

The roles of equatorial trapped waves (EQWs) and internal inertia–gravity waves in driving the quasi-biennial oscillation (QBO) are investigated using a high-resolution atmospheric general circulation model with T213L256 resolution (60-km horizontal and 300-m vertical resolution) integrated for three years. The model, which does not use a gravity wave drag parameterization, simulates a QBO. Although the simulated QBO has a shorter period than that of the real atmosphere, its amplitudes and structure in the lower stratosphere are fairly realistic. The zonal wavenumber/frequency spectra of simulated outgoing longwave radiation represent realistic signals of convectively coupled EQWs. Clear signals of EQWs are also seen in the stratospheric wind components. In the eastward wind shear of the QBO, eastward EQWs including Kelvin waves contribute up to ∼25%–50% to the driving of the QBO. The peaks of eastward wave forcing associated with EQWs and internal inertia–gravity waves occur at nearly the same time at the same altitude. On the other hand, westward EQWs contribute up to ∼10% to driving the QBO during the weak westward wind phase but make almost zero contribution during the relatively strong westward wind phase. Extratropical Rossby waves propagating into the equatorial region contribute ∼10%–25%, whereas internal inertia–gravity waves with zonal wavelength ≲1000 km are the main contributors to the westward wind shear phase of the simulated QBO.

Corresponding author address: Yoshio Kawatani, Japan Agency for Marine-Earth Science and Technology, Yokohama, 236-0001, Japan. Email: yoskawatani@jamstec.go.jp

Abstract

The roles of equatorial trapped waves (EQWs) and internal inertia–gravity waves in driving the quasi-biennial oscillation (QBO) are investigated using a high-resolution atmospheric general circulation model with T213L256 resolution (60-km horizontal and 300-m vertical resolution) integrated for three years. The model, which does not use a gravity wave drag parameterization, simulates a QBO. Although the simulated QBO has a shorter period than that of the real atmosphere, its amplitudes and structure in the lower stratosphere are fairly realistic. The zonal wavenumber/frequency spectra of simulated outgoing longwave radiation represent realistic signals of convectively coupled EQWs. Clear signals of EQWs are also seen in the stratospheric wind components. In the eastward wind shear of the QBO, eastward EQWs including Kelvin waves contribute up to ∼25%–50% to the driving of the QBO. The peaks of eastward wave forcing associated with EQWs and internal inertia–gravity waves occur at nearly the same time at the same altitude. On the other hand, westward EQWs contribute up to ∼10% to driving the QBO during the weak westward wind phase but make almost zero contribution during the relatively strong westward wind phase. Extratropical Rossby waves propagating into the equatorial region contribute ∼10%–25%, whereas internal inertia–gravity waves with zonal wavelength ≲1000 km are the main contributors to the westward wind shear phase of the simulated QBO.

Corresponding author address: Yoshio Kawatani, Japan Agency for Marine-Earth Science and Technology, Yokohama, 236-0001, Japan. Email: yoskawatani@jamstec.go.jp

Save