The Roles of Equatorial Trapped Waves and Internal Inertia–Gravity Waves in Driving the Quasi-Biennial Oscillation. Part II: Three-Dimensional Distribution of Wave Forcing

Yoshio Kawatani Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Yoshio Kawatani in
Current site
Google Scholar
PubMed
Close
,
Shingo Watanabe Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Shingo Watanabe in
Current site
Google Scholar
PubMed
Close
,
Kaoru Sato Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Tokyo, Japan

Search for other papers by Kaoru Sato in
Current site
Google Scholar
PubMed
Close
,
Timothy J. Dunkerton NorthWest Research Associates, Redmond, Washington

Search for other papers by Timothy J. Dunkerton in
Current site
Google Scholar
PubMed
Close
,
Saburo Miyahara Department of Earth and Planetary Sciences, Graduate School of Sciences, Kyushu University, Fukuoka, Japan

Search for other papers by Saburo Miyahara in
Current site
Google Scholar
PubMed
Close
, and
Masaaki Takahashi Center for Climate System Research, University of Tokyo, Kashiwa, Japan

Search for other papers by Masaaki Takahashi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Three-dimensional wave forcing of simulated quasi-biennial oscillation (QBO) is investigated using a high-resolution atmospheric general circulation model with T213L256 resolution (60-km horizontal and 300-m vertical resolution). In both the eastward and westward wind shear phases of the QBO, nearly all Eliassen–Palm flux (EP flux) divergence due to internal inertia–gravity waves (defined as fluctuations with zonal wavenumber ≥12) results from the divergence of the vertical component of the flux. On the other hand, EP flux divergence due to equatorial trapped waves (EQWs) results from both the meridional and vertical components of the flux in regions of strong vertical wind shear. Longitudinal dependence of wave forcing is also investigated by three-dimensional wave activity flux applicable to gravity waves. Near the top of the Walker circulation, strong eastward (westward) wave forcing occurs in the Eastern (Western) Hemisphere due to internal inertia–gravity waves with small horizontal phase speed. In the eastward wind shear zone associated with the QBO, the eastward wave forcing due to internal inertia–gravity waves in the Eastern Hemisphere is much larger than that in the Western Hemisphere, whereas in the westward wind shear zone, westward wave forcing does not vary much in the zonal direction. Zonal variation of wave forcing in the stratosphere results from (i) zonal variation of wave sources, (ii) the vertically sheared zonal winds associated with the Walker circulation, and (iii) the phase of the QBO.

Corresponding author address: Yoshio Kawatani, Japan Agency for Marine-Earth Science and Technology, Yokohama, 236-0001, Japan. Email: yoskawatani@jamstec.go.jp

Abstract

Three-dimensional wave forcing of simulated quasi-biennial oscillation (QBO) is investigated using a high-resolution atmospheric general circulation model with T213L256 resolution (60-km horizontal and 300-m vertical resolution). In both the eastward and westward wind shear phases of the QBO, nearly all Eliassen–Palm flux (EP flux) divergence due to internal inertia–gravity waves (defined as fluctuations with zonal wavenumber ≥12) results from the divergence of the vertical component of the flux. On the other hand, EP flux divergence due to equatorial trapped waves (EQWs) results from both the meridional and vertical components of the flux in regions of strong vertical wind shear. Longitudinal dependence of wave forcing is also investigated by three-dimensional wave activity flux applicable to gravity waves. Near the top of the Walker circulation, strong eastward (westward) wave forcing occurs in the Eastern (Western) Hemisphere due to internal inertia–gravity waves with small horizontal phase speed. In the eastward wind shear zone associated with the QBO, the eastward wave forcing due to internal inertia–gravity waves in the Eastern Hemisphere is much larger than that in the Western Hemisphere, whereas in the westward wind shear zone, westward wave forcing does not vary much in the zonal direction. Zonal variation of wave forcing in the stratosphere results from (i) zonal variation of wave sources, (ii) the vertically sheared zonal winds associated with the Walker circulation, and (iii) the phase of the QBO.

Corresponding author address: Yoshio Kawatani, Japan Agency for Marine-Earth Science and Technology, Yokohama, 236-0001, Japan. Email: yoskawatani@jamstec.go.jp

Save
  • Alexander, S. P., T. Tsuda, and Y. Kawatani, 2008a: COSMIC GPS observations of Northern Hemisphere winter stratospheric gravity waves and comparisons with an atmospheric general circulation model. Geophys. Res. Lett., 35 , L10808. doi:10.1029/2008GL033174.

    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., T. Tsuda, Y. Kawatani, and M. Takahashi, 2008b: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions. J. Geophys. Res., 113 , D24115. doi:10.1029/2008JD010039.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33 , 20312048.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39 , 179229.

  • Bergman, J. W., and M. L. Salby, 1994: Equatorial wave activity derived from fluctuations in observed convection. J. Atmos. Sci., 51 , 37913806.

    • Search Google Scholar
    • Export Citation
  • Ern, M., and P. Preusse, 2009: Wave fluxes of equatorial Kelvin waves and QBO zonal wind forcing derived from SABER and ECMWF temperature space–time spectra. Atmos. Chem. Phys., 9 , 39573986.

    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, M. Krebsbach, M. G. Mlynczak, and J. M. Russell III, 2008: Equatorial wave analysis from SABER and ECMWF temperatures. Atmos. Chem. Phys., 8 , 845869.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmospheric–Ocean Dynamics. Academic Press, 662 pp.

  • Giorgetta, M. A., E. Manzini, and E. Roechner, 2002: Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29 , 1245. doi:10.1029/2002GL014756.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, E. Roechner, M. Esch, and L. Bengtsson, 2006: Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J. Climate, 19 , 38823901.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., A. Hertzog, F. Vial, and G. Stenchikov, 2004: Longitudinal variation of the stratospheric quasi-biennial oscillation. J. Atmos. Sci., 61 , 383402.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1971: A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. J. Meteor. Soc. Japan, 49 , 125128.

    • Search Google Scholar
    • Export Citation
  • Imamura, T., 2006: Meridional propagation of planetary-scale waves in vertical shear: Implication for the Venus atmosphere. J. Atmos. Sci., 63 , 16231636.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., S. K. Dhaka, M. Takahashi, and T. Tsuda, 2003: Large potential energy of gravity waves over a smooth surface with little convection: Simulation and observation. Geophys. Res. Lett., 30 , 1438. doi:10.1029/2003GL016960.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., M. Takahashi, and T. Tokioka, 2004: Gravity waves around the subtropical jet of the southern winter in an atmospheric general circulation model. Geophys. Res. Lett., 31 , L22109. doi:10.1029/2004GL020794.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., K. Tsuji, and M. Takahashi, 2005: Zonally non-uniform distribution of equatorial gravity waves in an atmospheric general circulation model. Geophys. Res. Lett., 32 , L23815. doi:10.1029/2005GL024068.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., M. Takahashi, K. Sato, S. P. Alexander, and T. Tsuda, 2009: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: AGCM simulation of sources and propagation. J. Geophys. Res., 114 , D01102. doi:10.1029/2008JD010374.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., K. Sato, T. J. Dunkerton, S. Watanabe, S. Miyahara, and M. Takahashi, 2010: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing. J. Atmos. Sci., 67 , 963980.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47 , RG2003. doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Maruyama, T., 1994: Upward transport of eastward wind momentum due to disturbances of the equatorial lower stratosphere in the period range of about 2 days—Singapore data analysis for 1983–1993. J. Meteor. Soc. Japan, 72 , 423432.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., 1998: On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models. J. Atmos. Solar-Terr. Phys., 60 , 13571383.

    • Search Google Scholar
    • Export Citation
  • Miyahara, S., 2006: A three-dimensional wave activity flux applicable to inertio-gravity waves. SOLA, 2 , 108111.

  • Randel, W. J., and F. Wu, 2005: Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. J. Geophys. Res., 110 , D03102. doi:10.1029/2004JD005006.

    • Search Google Scholar
    • Export Citation
  • Ratnam, M. V., G. Tetzlaff, and C. Jacobi, 2004: Global and seasonal variations of stratospheric gravity wave deduced from the CHAMP/GPS satellite. J. Atmos. Sci., 61 , 16101620.

    • Search Google Scholar
    • Export Citation
  • Sato, K., and T. J. Dunkerton, 1997: Estimates of momentum flux associated with equatorial Kelvin and gravity waves. J. Geophys. Res., 102 , 2624726261.

    • Search Google Scholar
    • Export Citation
  • Sato, K., F. Hasegawa, and I. Hirota, 1994: Short-period disturbances in the equatorial lower stratosphere. J. Meteor. Soc. Japan, 72 , 859872.

    • Search Google Scholar
    • Export Citation
  • Sato, K., T. Kumakura, and M. Takahashi, 1999: Gravity waves appearing in a high-resolution GCM simulation. J. Atmos. Sci., 56 , 10051018.

    • Search Google Scholar
    • Export Citation
  • Sato, K., S. Watanabe, Y. Kawatani, Y. Tomikawa, K. Miyazaki, and M. Takahashi, 2009: On the origins of mesospheric gravity waves. Geophys. Res. Lett., 36 , L19801. doi:10.1029/2009GL039908.

    • Search Google Scholar
    • Export Citation
  • Tindall, J. C., J. Thuburn, and E. J. Highwood, 2006a: Equatorial waves in the lower stratosphere. I: A novel detection method. Quart. J. Roy. Meteor. Soc., 132 , 177194. doi:10.1256/qj.04.152.

    • Search Google Scholar
    • Export Citation
  • Tindall, J. C., J. Thuburn, and E. J. Highwood, 2006b: Equatorial waves in the lower stratosphere. II: Annual and interannual variability. Quart. J. Roy. Meteor. Soc., 132 , 195212. doi:10.1256/qj.04.153.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., Y. Murayama, H. Wiryosumarto, S. W. B. Harijono, and S. Kato, 1994: Radiosonde observations of equatorial atmosphere dynamics over Indonesia. 2. Characteristics of gravity waves. J. Geophys. Res., 99 , 1050710516.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., M. Nishida, C. Rocken, and R. H. Ware, 2000: A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J. Geophys. Res., 105 , 72577273.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., M. V. Ratnam, S. P. Alexander, T. Kozu, and Y. Takayabu, 2009: Temporal and spatial distributions of atmospheric wave energy in the equatorial stratosphere revealed by GPS radio occultation temperature data obtained with the CHAMP Satellite during 2001–2006. Earth Planets Space, 61 , 525533.

    • Search Google Scholar
    • Export Citation
  • Wada, K., T. Nitta, and K. Sato, 1999: Equatorial inertia–gravity waves in the lower stratosphere revealed by TOGA COARE IOP data. J. Meteor. Soc. Japan, 77 , 721736.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., 2008: Constraints on a non-orographic gravity wave drag parameterization using a gravity wave resolving general circulation model. SOLA, 4 , 6164.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., T. Nagashima, and S. Emori, 2005: Impact of global warming on gravity wave momentum flux in the lower stratosphere. SOLA, 1 , 189192.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., K. Sato, and M. Takahashi, 2006: A general circulation model study of orographic gravity waves over Antarctica excited by katabatic winds. J. Geophys. Res., 111 , D18104. doi:10.1029/2005JD006851.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., Y. Kawatani, Y. Tomikawa, K. Miyazaki, M. Takahashi, and K. Sato, 2008: General aspects of a T213L256 middle atmosphere general circulation model. J. Geophys. Res., 113 , D12110. doi:10.1029/2008JD010026.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57 , 613640.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite summaries, and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 315 102 7
PDF Downloads 224 74 3