Environmental Controls on the Simulated Diurnal Cycle of Warm-Season Precipitation in the Continental United States

S. B. Trier National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by S. B. Trier in
Current site
Google Scholar
PubMed
Close
,
C. A. Davis National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by C. A. Davis in
Current site
Google Scholar
PubMed
Close
, and
D. A. Ahijevych National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by D. A. Ahijevych in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The diurnal cycle of warm-season precipitation in the Rocky Mountains and adjacent Great Plains of the United States is examined using a numerical modeling framework designed to isolate the role of terrain-influenced diurnally varying flows within a quasi-stationary longwave pattern common to active periods of midsummer convection. Simulations are initialized using monthly averaged conditions and contain lateral boundary conditions that vary only with the diurnal cycle. Together these attributes mitigate effects of transient weather disturbances originating upstream of the model domain. After a spinup period, the final 7 days of the 10-day model integration are analyzed and compared with observations. Results indicate that many salient features of the monthly precipitation climatology are reproduced by the model. These include a stationary afternoon precipitation frequency maximum over the Rocky Mountains followed overnight by an eastward-progressing zone of maximum precipitation frequencies confined to a narrow latitudinal corridor in the Great Plains. The similarity to observations despite the monthly averaged initial and lateral boundary conditions suggests that although progressive weather disturbances (e.g., mobile cold fronts and midtropospheric short waves) that originate outside of the region may help enhance and focus precipitation in individual cases, they are not crucial to the general location and diurnal cycle of midsummer precipitation. The roles of persistent daily features such as the nocturnal low-level jet and the thermally induced mountain–plains vertical circulation on both convection and a mesoscale water budget of the central Great Plains (where the heaviest rain occurs) are discussed.

Corresponding author address: Stanley B. Trier, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: trier@ucar.edu

Abstract

The diurnal cycle of warm-season precipitation in the Rocky Mountains and adjacent Great Plains of the United States is examined using a numerical modeling framework designed to isolate the role of terrain-influenced diurnally varying flows within a quasi-stationary longwave pattern common to active periods of midsummer convection. Simulations are initialized using monthly averaged conditions and contain lateral boundary conditions that vary only with the diurnal cycle. Together these attributes mitigate effects of transient weather disturbances originating upstream of the model domain. After a spinup period, the final 7 days of the 10-day model integration are analyzed and compared with observations. Results indicate that many salient features of the monthly precipitation climatology are reproduced by the model. These include a stationary afternoon precipitation frequency maximum over the Rocky Mountains followed overnight by an eastward-progressing zone of maximum precipitation frequencies confined to a narrow latitudinal corridor in the Great Plains. The similarity to observations despite the monthly averaged initial and lateral boundary conditions suggests that although progressive weather disturbances (e.g., mobile cold fronts and midtropospheric short waves) that originate outside of the region may help enhance and focus precipitation in individual cases, they are not crucial to the general location and diurnal cycle of midsummer precipitation. The roles of persistent daily features such as the nocturnal low-level jet and the thermally induced mountain–plains vertical circulation on both convection and a mesoscale water budget of the central Great Plains (where the heaviest rain occurs) are discussed.

Corresponding author address: Stanley B. Trier, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: trier@ucar.edu

Save
  • Augustine, J. A., and F. Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9 , 116135.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., F. Caracena, and A. Marroquin, 1996: Extracting synoptic-scale diagnostic information from mesoscale models: The Eta Model, gravity waves, and quasi-geostrophic diagnostics. Bull. Amer. Meteor. Soc., 77 , 519528.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., and E. M. Rasmusson, 1999: Mississippi moisture budgets on regional scales. Mon. Wea. Rev., 127 , 26542673.

  • Bernardet, L., and W. R. Cotton, 1998: Multiscale evolution of a derecho-producing mesoscale convective system. Mon. Wea. Rev., 126 , 29913015.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38 , 283290.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131 , 23942416.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., and J. D. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21 , 41324146.

  • Carbone, R. E., J. W. Conway, N. A. Crook, and M. W. Moncrieff, 1990: The generation and propagation of a nocturnal squall line. Part I: Observations and implications for mesoscale predictability. Mon. Wea. Rev., 118 , 2649.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59 , 20332056.

    • Search Google Scholar
    • Export Citation
  • Chappell, C. F., 1986: Quasi-stationary convective events. Mesoscale Meteorology and Forecasting, P. Ray, Ed., Amer. Meteor. Soc., 289–310.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., J. H. Meritt, and J. M. Fritsch, 1996: Predicting the movement of mesoscale convective complexes. Wea. Forecasting, 11 , 4146.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., R. L. George, P. J. Wetzel, and R. L. McAnelly, 1983: A long-lived mesoscale convective complex. Part I: The mountain-generated component. Mon. Wea. Rev., 111 , 18931918.

    • Search Google Scholar
    • Export Citation
  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104 , 63776402.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., K. W. Manning, R. E. Carbone, S. B. Trier, and J. D. Tuttle, 2003: Coherence of warm-season continental rainfall in numerical weather prediction models. Mon. Wea. Rev., 131 , 26672679.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grummann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108 , 8851. doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25 , 13331345.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., J. A. Haynes, D. L. Andra Jr., and F. H. Carr, 2008: The evolution of morning convective systems over the U.S. Great Plains during the warm season. Part II: A climatology and the influence of environmental factors. Mon. Wea. Rev., 136 , 929944.

    • Search Google Scholar
    • Export Citation
  • Helfand, H. M., and S. D. Schubert, 1995: Climatology of the simulated Great Plains low-level jet and its contribution to the continental moisture budget of the United States. J. Climate, 8 , 784806.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10 , 481507.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19 , 199205.

  • Hong, S-Y., J. Dudhia, and S-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132 , 103120.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118 , 14291443.

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., N-C. Lau, I. M. Held, and J. J. Ploshay, 2007: Mechanisms of the Great Plains low-level jet as simulated in an AGCM. J. Atmos. Sci., 64 , 532547.

    • Search Google Scholar
    • Export Citation
  • Jirak, I. L., and W. R. Cotton, 2007: Observational analysis of the predictability of mesoscale convective systems. Wea. Forecasting, 22 , 813838.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2 , 3249.

  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136 , 39874004.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., F. Zhang, M. L. Kaplan, Y-L. Lin, R. Weglarz, and C. M. Trexler, 2001: Numerical simulations of a gravity wave event over CCOPE. Part III: The role of a mountain–plains solenoid in the generation of the second wave episode. Mon. Wea. Rev., 129 , 909933.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., R. E. Carbone, V. Levizzani, and J. D. Tuttle, 2008: The propagation and diurnal cycles of convection in northern tropical Africa. Quart. J. Roy. Meteor. Soc., 134A , 93109.

    • Search Google Scholar
    • Export Citation
  • Lee, M-I., and Coauthors, 2007: Sensitivity of horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico. J. Climate, 20 , 18621881.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with mesoscale convective complexes. Mon. Wea. Rev., 111 , 14751493.

    • Search Google Scholar
    • Export Citation
  • McAnelly, R. L., and W. R. Cotton, 1989: The precipitation lifecycle of mesoscale convective complexes over the central United States. Mon. Wea. Rev., 117 , 784808.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87 , 343360.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 , (D14). 1666316682.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and C. Liu, 2006: Representing convective organization in prediction models by a hybrid strategy. J. Atmos. Sci., 63 , 34043420.

    • Search Google Scholar
    • Export Citation
  • Olsson, P. Q., and W. R. Cotton, 1997: Balanced and unbalanced circulations in a primitive equation simulation of a midlatitude MCC. Part II: Analysis of balance. J. Atmos. Sci., 54 , 479497.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2008: Response of simulated squall lines to low-level cooling. J. Atmos. Sci., 65 , 13231341.

  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47 , 30673077.

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45 , 463485.

  • Schumacher, R. S., and R. H. Johnson, 2008: Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev., 136 , 39643986.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and M. L. Weisman, 2009: The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon. Wea. Rev., 137 , 488494.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note TN-468+STR, 88 pp. [Available from NCAR, P.O. Box 3000, Boulder, CO 80307].

    • Search Google Scholar
    • Export Citation
  • Toth, J. J., and R. H. Johnson, 1985: Summer surface flow characteristics over northeast Colorado. Mon. Wea. Rev., 113 , 14581469.

  • Trenberth, K. E., 1999: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12 , 13681381.

  • Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Wea. Rev., 121 , 10781098.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and C. A. Davis, 2002: Influence of balanced motions on heavy precipitation within a long-lived convectively generated vortex. Mon. Wea. Rev., 130 , 877899.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63 , 24372461.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1989a: Numerical study of an observed orogenic mesoscale convective system. Part I: Simulated genesis and comparison with observations. Mon. Wea. Rev., 117 , 273304.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1989b: Numerical study of an observed orogenic mesoscale convective system. Part II: Analysis of governing dynamics. Mon. Wea. Rev., 117 , 305328.

    • Search Google Scholar
    • Export Citation
  • Tucker, D. F., and N. A. Crook, 2005: Flow over heated terrain. Part II: Generation of convective precipitation. Mon. Wea. Rev., 133 , 25652582.

    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and C. A. Davis, 2006: Corridors of warm season precipitation in the central United States. Mon. Wea. Rev., 134 , 22972317.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103 , 406419.

    • Search Google Scholar
    • Export Citation
  • Wang, C-C., G. T-J. Chen, and R. E. Carbone, 2004: A climatology of warm-season cloud patterns over East Asia based on GMS infrared brightness temperature observations. Mon. Wea. Rev., 132 , 16061629.

    • Search Google Scholar
    • Export Citation
  • Wetzel, P. J., W. R. Cotton, and R. L. McAnelly, 1983: A long-lived mesoscale convective complex. Part II: Evolution and structure of the mature complex. Mon. Wea. Rev., 111 , 19191937.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., W-Z. Zheng, and Y-K. Xue, 2003: A numerical study of early summer regional climate and weather over LSA-East. Part I: Model implementation and verification. Mon. Wea. Rev., 131 , 18951909.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 418 184 14
PDF Downloads 296 95 6