• Ackerman, S. A., , and H. Chung, 1992: Radiative effects of airborne dust on regional energy budgets at the top of the atmosphere. J. Appl. Meteor., 31 , 223233.

    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., , P. Kiedron, , J. J. Michalsky, , G. Hodges, , C. J. Flynn, , and A. A. Lacis, 2007: Optical depth measurements by shadow-band radiometers and their uncertainties. Appl. Opt., 46 , 80278038.

    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., and Coauthors, 2005: An “A-Train” strategy for quantifying direct aerosol forcing of climate. Bull. Amer. Meteor. Soc., 86 , 17951809.

    • Search Google Scholar
    • Export Citation
  • Brindley, H. E., 2007: Estimating the top-of-atmosphere longwave radiative forcing due to Saharan dust from satellite observations over a West African surface site. Atmos. Sci. Lett., 8 , 7479.

    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., , D. L. Hlavka, , E. J. Welton, , C. J. Flynn, , D. D. Turner, , J. D. Spinhirne, , V. S. Scott, , and I. H. Hwang, 2002: Full-time, eye-safe cloud and aerosol lidar observation at Atmospheric Radiation Measurement program sites: Instruments and data processing. J. Atmos. Oceanic Technol., 19 , 431442.

    • Search Google Scholar
    • Export Citation
  • Chiapello, I., , G. Bergametti, , B. Chatenet, , F. Dulac, , I. Jankowiak, , C. Liousse, , and E. S. Soares, 1999: Contribution of the different aerosol species to the aerosol mass load and optical depth over the northeastern tropical Atlantic. J. Geophys. Res., 104 , 40254035.

    • Search Google Scholar
    • Export Citation
  • D’Almeida, G. A., , P. Koepke, , and E. P. Shettle, 1991: Atmospheric Aerosols: Global Climatology and Radiative Characteristics. A. Deepak, 561 pp.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J-L., , C. Gautier, , P. Ricchiazzi, , and Y. Fouquart, 2002: Longwave scattering effects of mineral aerosols. J. Atmos. Sci., 59 , 19591966.

    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., , W. L. Smith, , H. B. Howell, , R. O. Knuteson, , H. Woolf, , and H. E. Revercomb, 2003: Near-continuous profiling of temperature, moisture, and atmospheric stability using the atmospheric emitted radiance interferometer (AERI). J. Appl. Meteor., 42 , 584597.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 129–234.

    • Search Google Scholar
    • Export Citation
  • Fouquart, Y., , B. Bonnel, , G. Brogniez, , J. C. Buriez, , L. Smith, , J. J. Morcrette, , and A. Cerf, 1987: Observations of Saharan aerosols: Results of ECLATS field experiment. Part II: Broadband radiative characteristics of the aerosols and vertical radiative flux divergence. J. Climate Appl. Meteor., 26 , 3852.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49 , 21392156.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50 , 20082025.

  • Hansell, R. A., , S-C. Tsay, , Q. Ji, , K. N. Liou, , and S-C. Ou, 2003: Surface aerosol radiative forcing derived from collocated ground-based radiometric observations during PRIDE, SAFARI, and ACE-Asia. Appl. Opt., 42 , 55335544.

    • Search Google Scholar
    • Export Citation
  • Hansell, R. A., , K. N. Liou, , S-C. Ou, , S-C. Tsay, , Q. Ji, , and J. S. Reid, 2008: Remote sensing of mineral dust aerosol using AERI during the UAE2: A modeling and sensitivity study. J. Geophys. Res., 113 , D18202. doi:10.1029/2008JD010246.

    • Search Google Scholar
    • Export Citation
  • Harrison, L., , and J. Michalsky, 1994: Objective algorithms for the retrieval of optical depths from ground-based measurements. J. Appl. Opt., 33 , 51265132.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., , P. N. Francis, , M. D. Glew, , and J. P. Taylor, 2001: Optical properties and direct radiative effect of Saharan dust: A case study of two Saharan dust outbreaks using aircraft data. J. Geophys. Res., 106 , (D16). 1841718430.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and Coauthors, 2003: Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum. J. Geophys. Res., 108 , 8577. doi:10.1029/2002JD002687.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., , R. P. Allan, , I. Culverwell, , T. Slingo, , S. Milton, , J. Edwards, , and N. Clerbaux, 2005: Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003? J. Geophys. Res., 110 , D05105. doi:10.1029/2004JD005232.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and Coauthors, 2008: Overview of the Dust and Biomass-Burning Experiment and African Monsoon Multidisciplinary Analysis special observing period-0. J. Geophys. Res., 113 , D00C17. doi:10.1029/2008JD010077.

    • Search Google Scholar
    • Export Citation
  • Heinold, B., , I. Tegen, , K. Schepanski, , and O. Hellmuth, 2008: Dust radiative feedback on Saharan boundary layer dynamics and dust mobilization. Geophys. Res. Lett., 35 , L20817. doi:10.1029/2008GL035319.

    • Search Google Scholar
    • Export Citation
  • Highwood, E. J., , J. M. Haywood, , M. D. Silverstone, , S. M. Newman, , and J. P. Taylor, 2003: Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE): 2. Terrestrial spectrum. J. Geophys. Res., 108 , 8578. doi:10.1029/2002JD002552.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66 , 116.

    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., , J. R. Herman, , and C. Weaver, 2000: Determination of radiative forcing of Saharan dust using combined TOMS and ERBE data. J. Geophys. Res., 105 , (D16). 2064920661.

    • Search Google Scholar
    • Export Citation
  • Jeong, M-J., , Z. Li, , E. Andrews, , and S-C. Tsay, 2007: Effect of aerosol humidification on the column aerosol optical thickness over the Atmospheric Radiation Measurement Southern Great Plains site. J. Geophys. Res., 112 , D10202. doi:10.1029/2006JD007176.

    • Search Google Scholar
    • Export Citation
  • Jeong, M-J., , S-C. Tsay, , Q. Ji, , N. C. Hsu, , R. A. Hansell, , and J. Lee, 2008: Ground-based measurements of airborne Saharan dust in marine environment during the NAMMA field experiment. Geophys. Res. Lett., 35 , L20805. doi:10.1029/2008GL035587.

    • Search Google Scholar
    • Export Citation
  • Ji, Q., , and S. C. Tsay, 2000: On the dome effect of Eppley pyrgeometers and pyranometers. Geophys. Res. Lett., 27 , 971974.

  • Jones, C., , N. Mahowald, , and C. Luo, 2003: The role of easterly waves on African desert dust transport. J. Climate, 16 , 36173628.

  • Kahnert, M., , T. Nousiainen, , and P. Räisänen, 2007: Mie simulations as an error source in mineral aerosol radiative forcing calculations. Quart. J. Roy. Meteor. Soc., 133 , 299307.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004: Atmospheric Emitted Radiance Interferometer (AERI). Part II: Instrument performance. J. Atmos. Oceanic Technol., 21 , 17771789.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., , M. K. Kim, , and K. M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26 , 855864.

    • Search Google Scholar
    • Export Citation
  • Liu, X., , J. Wang, , and S. Christopher, 2003: Shortwave direct radiative forcing of Saharan dust aerosols over the Atlantic Ocean. Int. J. Remote Sens., 24 , 51475160.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., , D. R. Muhs, , S. Levis, , P. J. Rasch, , M. Yoshioka, , C. S. Zender, , and C. Luo, 2006: Change in atmospheric mineral aerosols in response to climate: Last glacial period, pre- industrial, modern and doubled-carbon dioxide climates. J. Geophys. Res., 111 , D10202. doi:10.1029/2005JD006653.

    • Search Google Scholar
    • Export Citation
  • McClatchley, R. A., , R. W. Fenn, , J. E. A. Volz, , and J. S. Garing, 1972: Optical properties of the atmosphere. Air Force Cambridge Research Laboratory Environmental Research Paper 411, 107 pp.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., , E. I. Kassianov, , J. Barnard, , C. Flynn, , and T. P. Ackerman, 2009: Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger. J. Geophys. Res., 114 , D00E06. doi:10.1029/2008JD010491.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., , and L. D. Travis, 1994: Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation. Appl. Opt., 33 , 72067225.

    • Search Google Scholar
    • Export Citation
  • Mohalfi, S., , H. S. Bedi, , T. N. Krishnamurti, , and S. Cocke, 1998: Impact of shortwave radiative effects of dust aerosols on the summer season heat low over Saudi Arabia. Mon. Wea. Rev., 126 , 31533168.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., 1999: Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc. Natl. Acad. Sci. USA, 96 , 33963403.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J. L., , C. D. Thorncroft, , A. Diedhiou, , T. Lebel, , D. J. Parker, , and J. Polcher, 2006: African Monsoon Multidisciplinary Analysis: An international research project and field campaign. Bull. Amer. Meteor. Soc., 87 , 17391746.

    • Search Google Scholar
    • Export Citation
  • Reid, E. A., , J. S. Reid, , M. M. Meier, , M. R. Dunlap, , S. S. Cliff, , A. Broumas, , K. Perry, , and H. Maring, 2003: Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis. J. Geophys. Res., 108 , 8591. doi:10.1029/2002JD002935.

    • Search Google Scholar
    • Export Citation
  • Reid, J. S., and Coauthors, 2003: Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE). J. Geophys. Res., 108 , 8586. doi:10.1029/2002JD002493.

    • Search Google Scholar
    • Export Citation
  • Reid, J. S., and Coauthors, 2006: Reconciliation of coarse-mode sea-salt aerosol particle size measurements and parameterizations at a subtropical ocean receptor site. J. Geophys. Res., 111 , D02202. doi:10.1029/2005JD006200.

    • Search Google Scholar
    • Export Citation
  • Reid, J. S., , E. A. Reid, , A. Walker, , S. Piketh, , S. Cliff, , A. Al Mandoos, , S-C. Tsay, , and T. F. Eck, 2008: Dynamics of southwest Asian dust particle size characteristics with implications for global dust research. J. Geophys. Res., 113 , D14212. doi:10.1029/2007JD009752.

    • Search Google Scholar
    • Export Citation
  • Rose, F. G., , and T. P. Charlock, 2002: New Fu–Liou code tested with ARM Raman lidar and CERES in pre-CALIPSO sensitivity study. Preprints, 11th Conf. on Atmospheric Radiation, Ogden, UT, Amer. Meteor. Soc., P4.8.

    • Search Google Scholar
    • Export Citation
  • Shettle, E. P., , and R. W. Fenn, 1979: Models for the aerosols of the lower atmosphere and the effects of the humidity variations on their optical properties. Air Force Geophysics Laboratory Environmental Research Paper No. 675, 94 pp.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., and Coauthors, 2006: Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance. Geophys. Res. Lett., 33 , L24817. doi:10.1029/2006GL027869.

    • Search Google Scholar
    • Export Citation
  • Smirnov, A., , B. N. Holben, , T. F. Eck, , O. Dubovik, , and I. Slutsker, 2000: Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ., 73 , 337349.

    • Search Google Scholar
    • Export Citation
  • Sokolik, I. N., , and O. B. Toon, 1996a: Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 381 , 681683.

  • Sokolik, I. N., , and O. B. Toon, 1996b: Direct radiative forcing by airborne mineral aerosols. J. Aerosol Sci., 27 , (Suppl. 1). S11S12.

    • Search Google Scholar
    • Export Citation
  • Sokolik, I. N., , and O. B. Toon, 1997: Regional direct radiative forcing by the airborne mineral aerosols. J. Aerosol Sci., 28 , (Suppl. 1). S655S656.

    • Search Google Scholar
    • Export Citation
  • Sokolik, I. N., , and O. B. Toon, 1999: Incorporation of mineralogical composition into models of the radiative properties of mineral aerosols from UV to IR wavelengths. J. Geophys. Res., 104 , 94239444.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds. 2007: Climate Change 2007: The Physical Sciences Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Su, J., , J. Huang, , Q. Fu, , P. Minnis, , J. Ge, , and J. Bi, 2008: Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu–Liou radiative model and CERES measurements. Atmos. Chem. Phys., 8 , 27632771.

    • Search Google Scholar
    • Export Citation
  • Tanré, D., and Coauthors, 2003: Measurement and modeling of the Saharan dust radiative impact: Overview of the Saharan Dust Experiment (SHADE). J. Geophys. Res., 108 , 8574. doi:10.1029/2002JD003273.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2008: Ground-based infrared retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel. J. Geophys. Res., 113 , D00E03. doi:10.1029/2008JD010054.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M., , S. Young, , D. Winker, , K. Powell, , A. Omar, , Z. Liu, , Y. Hu, , and C. Hostetler, 2004: Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products. Laser Radar Techniques for Atmospheric Sensing, U. N. Singh, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5575), doi:10.1117/12.572024.

    • Search Google Scholar
    • Export Citation
  • Vogelmann, A. M., , P. J. Flatau, , M. Szczodrak, , K. M. Markowicz, , and P. J. Minnett, 2003: Observations of large aerosol IR forcing at the surface. Geophys. Res. Lett., 30 , 1655. doi:10.1029/2002GL016829.

    • Search Google Scholar
    • Export Citation
  • Volz, F. E., 1973: Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice, and fly ash. Appl. Opt., 12 , 564568.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., 1984: Optical constants of ice from the ultraviolet to the microwave. Appl. Opt., 23 , 12061225.

  • Welton, E. J., , J. R. Campbell, , J. D. Spinhirne, , and V. S. Scott, 2001: Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems. Lidar Remote Sensing for Industry and Environmental Monitoring, U. N. Singh, T. Itabe, and N. Sugimoto, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4153), 151–158.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., , W. H. Hunt, , and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34 , L19803. doi:10.1029/2007GL030135.

    • Search Google Scholar
    • Export Citation
  • World Climate Program, 1986: A preliminary cloudless standard atmosphere for radiation computation. WCP-112, WMO/TD-24, 60 pp.

  • Yu, H., and Coauthors, 2006: A review of measurement-based assessment of aerosol direct radiative effect and forcing. Atmos. Chem. Phys., 6 , 613666.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , and S. A. Christopher, 2003: Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra. Geophys. Res. Lett., 30 , 2188. doi:10.1029/2003GL018479.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 34 34 4
PDF Downloads 20 20 3

An Assessment of the Surface Longwave Direct Radiative Effect of Airborne Saharan Dust during the NAMMA Field Campaign

View More View Less
  • * University of Maryland, College Park, College Park, Maryland
  • + NASA Goddard Space Flight Center, Greenbelt, Maryland
  • # Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland
  • @ Department of Atmospheric Sciences, National Central University, Chung-Li, Taiwan
  • 5 Naval Research Laboratory, Monterey, California
  • * *Department of Atmospheric and Oceanic Sciences, and Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, California
© Get Permissions
Restricted access

Abstract

In September 2006, NASA Goddard’s mobile ground-based laboratories were deployed to Sal Island in Cape Verde (16.73°N, 22.93°W) to support the NASA African Monsoon Multidisciplinary Analysis (NAMMA) field study. The Atmospheric Emitted Radiance Interferometer (AERI), a key instrument for spectrally characterizing the thermal IR, was used to retrieve the dust IR aerosol optical depths (AOTs) in order to examine the diurnal variability of airborne dust with emphasis on three separate dust events. AERI retrievals of dust AOT are compared with those from the coincident/collocated multifilter rotating shadowband radiometer (MFRSR), micropulse lidar (MPL), and NASA Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) sensors. The retrieved AOTs are then inputted into the Fu–Liou 1D radiative transfer model to evaluate local instantaneous direct longwave radiative effects (DRELW) of dust at the surface in cloud-free atmospheres and its sensitivity to dust microphysical parameters. The top-of-atmosphere DRELW and longwave heating rate profiles are also evaluated. Instantaneous surface DRELW ranges from 2 to 10 W m−2 and exhibits a strong linear dependence with dust AOT yielding a DRELW of 16 W m−2 per unit dust AOT. The DRELW is estimated to be ∼42% of the diurnally averaged direct shortwave radiative effect at the surface but of opposite sign, partly compensating for the shortwave losses. Certainly nonnegligible, the authors conclude that DRELW can significantly impact the atmospheric energetics, representing an important component in the study of regional climate variation.

Corresponding author address: Richard A. Hansell Jr., NASA Goddard Space Flight Center, Greenbelt, MD 20771. Email: richard.a.hansell@nasa.gov

This article included in the TCSP NAMMA special collection.

Abstract

In September 2006, NASA Goddard’s mobile ground-based laboratories were deployed to Sal Island in Cape Verde (16.73°N, 22.93°W) to support the NASA African Monsoon Multidisciplinary Analysis (NAMMA) field study. The Atmospheric Emitted Radiance Interferometer (AERI), a key instrument for spectrally characterizing the thermal IR, was used to retrieve the dust IR aerosol optical depths (AOTs) in order to examine the diurnal variability of airborne dust with emphasis on three separate dust events. AERI retrievals of dust AOT are compared with those from the coincident/collocated multifilter rotating shadowband radiometer (MFRSR), micropulse lidar (MPL), and NASA Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) sensors. The retrieved AOTs are then inputted into the Fu–Liou 1D radiative transfer model to evaluate local instantaneous direct longwave radiative effects (DRELW) of dust at the surface in cloud-free atmospheres and its sensitivity to dust microphysical parameters. The top-of-atmosphere DRELW and longwave heating rate profiles are also evaluated. Instantaneous surface DRELW ranges from 2 to 10 W m−2 and exhibits a strong linear dependence with dust AOT yielding a DRELW of 16 W m−2 per unit dust AOT. The DRELW is estimated to be ∼42% of the diurnally averaged direct shortwave radiative effect at the surface but of opposite sign, partly compensating for the shortwave losses. Certainly nonnegligible, the authors conclude that DRELW can significantly impact the atmospheric energetics, representing an important component in the study of regional climate variation.

Corresponding author address: Richard A. Hansell Jr., NASA Goddard Space Flight Center, Greenbelt, MD 20771. Email: richard.a.hansell@nasa.gov

This article included in the TCSP NAMMA special collection.

Save