• Berner, J., , G. J. Shutts, , M. Leutbecher, , and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF Ensemble Prediction System. J. Atmos. Sci., 66 , 603626.

    • Search Google Scholar
    • Export Citation
  • Bright, D. R., , and S. L. Mullen, 2002: Short-range ensemble forecasts of precipitation during the southwest monsoon. Wea. Forecasting, 17 , 10801100.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., , R. H. Johnson, , P. T. Haertel, , and J. Wang, 2003: Corrected TOGA COARE sounding humidity data: Impact on diagnosed properties of convection and climate over the warm pool. J. Climate, 16 , 23702384.

    • Search Google Scholar
    • Export Citation
  • Cohen, B. G., , and G. C. Craig, 2004: The response time of a convective cloud ensemble to a change in forcing. Quart. J. Roy. Meteor. Soc., 130 , 933944.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., , I. Beau, , P. Bechtold, , J-Y. Grandpeix, , J-M. Piriou, , J-L. Redelsperger, , and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130 , 30553079.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , and M. Bister, 1996: Moist convective velocity and buoyancy scales. J. Atmos. Sci., 53 , 32763285.

  • Ferrier, B. S., , W-K. Tao, , and J. Simpson, 1995: A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. J. Atmos. Sci., 52 , 10011033.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Z., , and D. J. Raymond, 2007: A simple, vertically resolved model of tropical disturbances with a humidity closure. Tellus, 59A , 344354.

    • Search Google Scholar
    • Export Citation
  • Fulton, S. R., , and W. H. Schubert, 1985: Vertical normal mode transforms: Theory and application. Mon. Wea. Rev., 113 , 647658.

  • Grabowski, W. W., 2003: MJO-like coherent structures: Sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 60 , 847864.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., , and R. H. Johnson, 1998: Two-day disturbances in the equatorial western Pacific. Quart. J. Roy. Meteor. Soc., 124 , 615636.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., , G. Kiladis, , A. Denno, , and T. Rickenbach, 2008: Vertical-mode decompositions of 2-day waves and the Madden–Julian oscillation. J. Atmos. Sci., 65 , 813833.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 3855.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and G. S. Young, 1983: Heat and moisture budgets of tropical mesoscale anvil clouds. J. Atmos. Sci., 40 , 21382147.

  • Khairoutdinov, M. F., , and D. A. Randall, 2003: Cloud-resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60 , 607625.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63 , 13081323.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008: A moisture-stratiform instability for convectively coupled waves. J. Atmos. Sci., 65 , 834854.

  • Kuang, Z., 2010: Linear response functions of a cumulus ensemble to temperature and moisture perturbations and implications for the dynamics of convectively coupled waves. J. Atmos. Sci., 67 , 941962.

    • Search Google Scholar
    • Export Citation
  • Lin, J-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19 , 26652690.

    • Search Google Scholar
    • Export Citation
  • Lin, J. W-B., , and J. D. Neelin, 2000: Influence of stochastic moist convective parameterization on tropical climate variability. Geophys. Res. Lett., 27 , 36913694.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and M. G. Shefter, 2001: Models for stratiform instability and convectively coupled waves. J. Atmos. Sci., 58 , 15671584.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57 , 15151535.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2004: Sensitivities of cumulus-ensemble rainfall in a cloud-resolving model with parameterized large-scale dynamics. J. Atmos. Sci., 61 , 23082317.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , and R. A. Houze, 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52 , 18071828.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , S. Tulich, , J. Lin, , and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42 , 329.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., , R. H. Johnson, , and W. R. Cotton, 1988: The sensitivity of two-dimensional simulations tropical squall lines to environmental profiles. J. Atmos. Sci., 45 , 36253649.

    • Search Google Scholar
    • Export Citation
  • Plant, R. S., , and G. C. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65 , 87105.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and Z. Fuchs, 2007: Convectively coupled gravity and moisture modes in a simple atmospheric model. Tellus, 59A , 627640.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and S. L. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett., 34 , L06811. doi:10.1029/2006GL028607.

    • Search Google Scholar
    • Export Citation
  • Robe, F. R., , and K. A. Emanuel, 1996: Moist convective scaling: Some inferences from three-dimensional cloud ensemble simulations. J. Atmos. Sci., 53 , 32653275.

    • Search Google Scholar
    • Export Citation
  • Robe, F. R., , and K. A. Emanuel, 2001: The effect of vertical wind shear on radiative–convective equilibrium states. J. Atmos. Sci., 58 , 14271445.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., , and R. Wahrlich, 1999: Observed evolution of tropical deep convective events and their environment. Mon. Wea. Rev., 127 , 17771795.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , S. E. Yuter, , C. S. Bretherton, , and G. N. Kiladis, 2004: Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132 , 422444.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., , and C. A. Reynolds, 2008: Stochastic nature of physical parameterizations in ensemble prediction: A stochastic convection approach. Mon. Wea. Rev., 136 , 483496.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., , and B. E. Mapes, 2008: Multiscale convective wave disturbances in the tropics: Insights from a two-dimensional cloud-resolving model. J. Atmos. Sci., 65 , 140155.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., , D. A. Randall, , and B. E. Mapes, 2007: Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model. J. Atmos. Sci., 64 , 12101229.

    • Search Google Scholar
    • Export Citation
  • Xu, K. M., , A. Arakawa, , and S. K. Krueger, 1992: The macroscopic behavior of cumulus ensembles simulated by a cumulus ensemble model. J. Atmos. Sci., 49 , 24022420.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , S. Esbensen, , and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 3
PDF Downloads 14 14 3

Transient Environmental Sensitivities of Explicitly Simulated Tropical Convection

View More View Less
  • 1 CIRES, University of Colorado, Boulder, Colorado
  • 2 University of Miami, RSMAS, Miami, Florida
© Get Permissions
Restricted access

Abstract

A three-dimensional cloud-resolving model, maintained in a statistically steady convecting state by tropics-like forcing, is subjected to sudden (10 min) stimuli consisting of horizontally homogeneous temperature and/or moisture sources with various profiles. Ensembles of simulations are used to increase the statistical robustness of the results and to assess the deterministic nature of the model response for domain sizes near contemporary global model resolution. The response to middle- and upper-tropospheric perturbations is predominantly local in the vertical: convection damps the imposed stimulus over a few hours. Low-level perturbations are similarly damped, but also produce a vertically nonlocal response: enhancement or suppression of new deep convective clouds extending above the perturbed level. Experiments show that the “effective inhibition layer” for deep convection is about 4 km deep, far deeper than traditional convective inhibition defined for undilute lifted parcels. Both the local and nonlocal responses are remarkably linear but can be highly stochastic, especially if deep convection is only intermittently present (small domains, weak forcing). Quantitatively, temperature-versus-moisture perturbations in a ratio corresponding to adiabatic vertical displacements produce responses of roughly equal magnitude. However, moisture perturbations seem to provoke the nonlocal (upward spreading) type of response more effectively. This nonlocal part of the response is also more effective when background forcing intensity is weak. Only at very high intensity does the response approach the limits of purely local damping and pure determinism that would be most convenient for theory and parameterization.

Corresponding author address: Stefan Tulich, CIRES, NOAA/ESRL R/PSD1, 325 Broadway, Boulder, CO 80309. Email: stefan.tulich@noaa.gov

Abstract

A three-dimensional cloud-resolving model, maintained in a statistically steady convecting state by tropics-like forcing, is subjected to sudden (10 min) stimuli consisting of horizontally homogeneous temperature and/or moisture sources with various profiles. Ensembles of simulations are used to increase the statistical robustness of the results and to assess the deterministic nature of the model response for domain sizes near contemporary global model resolution. The response to middle- and upper-tropospheric perturbations is predominantly local in the vertical: convection damps the imposed stimulus over a few hours. Low-level perturbations are similarly damped, but also produce a vertically nonlocal response: enhancement or suppression of new deep convective clouds extending above the perturbed level. Experiments show that the “effective inhibition layer” for deep convection is about 4 km deep, far deeper than traditional convective inhibition defined for undilute lifted parcels. Both the local and nonlocal responses are remarkably linear but can be highly stochastic, especially if deep convection is only intermittently present (small domains, weak forcing). Quantitatively, temperature-versus-moisture perturbations in a ratio corresponding to adiabatic vertical displacements produce responses of roughly equal magnitude. However, moisture perturbations seem to provoke the nonlocal (upward spreading) type of response more effectively. This nonlocal part of the response is also more effective when background forcing intensity is weak. Only at very high intensity does the response approach the limits of purely local damping and pure determinism that would be most convenient for theory and parameterization.

Corresponding author address: Stefan Tulich, CIRES, NOAA/ESRL R/PSD1, 325 Broadway, Boulder, CO 80309. Email: stefan.tulich@noaa.gov

Save