• Bluestein, H. B., 1992: Synoptic-Dynamic Meteorology in Midlatitudes. Vol. I, Principles of Kinematics and Dynamics, Oxford University Press, 431 pp.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1991: Fluid Mechanics of the Atmosphere. Academic Press, 489 pp.

  • Cushman-Roisin, B., 1994: Introduction to Geophysical Fluid Dynamics. Prentice-Hall, 320 pp.

  • Djurić, D., 1994: Weather Analysis. Prentice-Hall, 304 pp.

  • Hildebrand, F. B., 1976: Advanced Calculus for Applications. 2nd ed. Prentice-Hall, 733 pp.

  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic, 535 pp.

  • Kinsman, B., 1965: Wind Waves: Their Generation and Propagation on the Ocean Surface. Prentice-Hall, 676 pp.

  • Lebedev, L. P., , and M. J. Cloud, 2003: Tensor Analysis. World Scientific, 191 pp.

  • LeBlond, P. H., , and L. A. Mysak, 1978: Waves in the Ocean. Elsevier Scientific, 602 pp.

  • Lighthill, J., 1986: An Informal Introduction to Theoretical Fluid Mechanics. Oxford University Press, 260 pp.

  • Martin, J. E., 2006: Mid-Latitude Atmospheric Dynamics: A First Course. John Wiley and Sons, 324 pp.

  • Richards, P. I., 1959: Manual of Mathematical Physics. Pergamon, 486 pp.

  • Riegel, C. A., , and A. F. C. Bridger, 1992: Fundamentals of Atmospheric Dynamics and Thermodynamics. World Scientific, 496 pp.

  • Schutz, B. F., 1980: Geometrical Methods of Mathematical Physics. Cambridge University Press, 250 pp.

  • Simmonds, J. G., 1994: A Brief on Tensor Analysis. 2nd ed. Springer-Verlag, 112 pp.

  • Zdunkowski, W., , and A. Bott, 2003: Dynamics of the Atmosphere: A Course in Theoretical Meteorology. Cambridge University Press, 719 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 11
PDF Downloads 24 24 1

Momentum Advection and the Gradient of a Vector Field: A Discussion of Standard Notation

View More View Less
  • 1 Department of Earth Sciences, Millersville University, Millersville, Pennsylvania
© Get Permissions
Restricted access

Abstract

The confusion and ambiguity in the literature regarding the notation (V · )V versus V · ∇V is discussed, and the equivalence of the two expressions is demonstrated. The invariance of this notation in any coordinate system is also shown.

Corresponding author address: Alex J. DeCaria, P.O. Box 1002, Millersville, PA 17551. Email: alex.decaria@millersville.edu

Abstract

The confusion and ambiguity in the literature regarding the notation (V · )V versus V · ∇V is discussed, and the equivalence of the two expressions is demonstrated. The invariance of this notation in any coordinate system is also shown.

Corresponding author address: Alex J. DeCaria, P.O. Box 1002, Millersville, PA 17551. Email: alex.decaria@millersville.edu

Save