Model Study of Waves Generated by Convection with Direct Validation via Satellite

Alison W. Grimsdell NorthWest Research Associates, Colorado Research Associates Division, Boulder, Colorado

Search for other papers by Alison W. Grimsdell in
Current site
Google Scholar
PubMed
Close
,
M. Joan Alexander NorthWest Research Associates, Colorado Research Associates Division, Boulder, Colorado

Search for other papers by M. Joan Alexander in
Current site
Google Scholar
PubMed
Close
,
Peter T. May Centre for Australian Weather and Climate Research, CSIRO/Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Peter T. May in
Current site
Google Scholar
PubMed
Close
, and
Lars Hoffmann Forschungszentrum Jülich, ICG-1, Jülich, Germany

Search for other papers by Lars Hoffmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmospheric gravity waves have a major effect on atmospheric circulation, structure, and stability on a global scale. Gravity waves can be generated by convection, but in many cases it is difficult to link convection directly to a specific wave event. In this research, the authors examine an event on 12 January 2003 when convective waves were clearly generated by a period of extremely intense rainfall in the region of Darwin, Australia, during the early morning. The waves were observed by the Atmospheric Infrared Sounder (AIRS) instrument on board the Aqua satellite, and a dry version of a nonlinear, three-dimensional mesoscale cloud-resolving model is used to generate a comparable wave field. The model is forced by a spatially and temporally varying heating field obtained from a scanning radar located north of Darwin at Gunn Point. With typical cloud-resolving model studies it is generally not possible to compare the model results feature-for-feature with observations since although the model precipitation and small-scale heating may be similar to observations, they will occur at different locations and times. In this case the comparison is possible since the model is forced by the observed heating pattern. It is shown that the model output wave pattern corresponds well to the wave pattern observed by the AIRS instrument at the time of the AIRS overpass.

Corresponding author address: Alison Grimsdell, NWRA, CoRA Division, 3380 Mitchell Lane, Boulder, CO 80301. Email: grimsdell@cora.nwra.com

Abstract

Atmospheric gravity waves have a major effect on atmospheric circulation, structure, and stability on a global scale. Gravity waves can be generated by convection, but in many cases it is difficult to link convection directly to a specific wave event. In this research, the authors examine an event on 12 January 2003 when convective waves were clearly generated by a period of extremely intense rainfall in the region of Darwin, Australia, during the early morning. The waves were observed by the Atmospheric Infrared Sounder (AIRS) instrument on board the Aqua satellite, and a dry version of a nonlinear, three-dimensional mesoscale cloud-resolving model is used to generate a comparable wave field. The model is forced by a spatially and temporally varying heating field obtained from a scanning radar located north of Darwin at Gunn Point. With typical cloud-resolving model studies it is generally not possible to compare the model results feature-for-feature with observations since although the model precipitation and small-scale heating may be similar to observations, they will occur at different locations and times. In this case the comparison is possible since the model is forced by the observed heating pattern. It is shown that the model output wave pattern corresponds well to the wave pattern observed by the AIRS instrument at the time of the AIRS overpass.

Corresponding author address: Alison Grimsdell, NWRA, CoRA Division, 3380 Mitchell Lane, Boulder, CO 80301. Email: grimsdell@cora.nwra.com

Save
  • Alexander, M. J., and J. R. Holton, 2004: On the spectrum of vertically propagating gravity waves generated by a transient heat source. Atmos. Chem. Phys., 4 , 923932.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and C. Barnet, 2007: Using satellite observations to constrain parameterizations of gravity wave effects for global models. J. Atmos. Sci., 64 , 16521665.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., J. R. Holton, and D. R. Durran, 1995: The gravity wave response above deep convection in a squall line simulation. J. Atmos. Sci., 52 , 22122226.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., J. H. Beres, and L. Pfister, 2000: Tropical stratospheric gravity wave activity and relationships to clouds. J. Geophys. Res., 105 , 2229922309.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., P. T. May, and J. H. Beres, 2004: Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment. J. Geophys. Res., 109 , D20S04. doi:10.1029/2004JD004729.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., J. H. B. Richter, and B. R. Sutherland, 2006: Generation and trapping of gravity waves from convection with comparison to parameterization. J. Atmos. Sci., 63 , 29632977.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., W. F. Krajewski, and J. Smith, 1999: Uncertainty quantification of mean-areal radar-rainfall estimates. J. Atmos. Oceanic Technol., 16 , 206215.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39 , 179229.

  • Beres, J. H., R. R. Garcia, B. A. Boville, and F. Sassi, 2005: Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM). J. Geophys. Res., 110 , D10108. doi:10.1029/2004JD005504.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and M. L. Salby, 1994: Equatorial wave activity derived from fluctuations in observed convection. J. Atmos. Sci., 51 , 37913806.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C., 1988: A theory for nonprecipitating convection between two parallel plates. Part II: Nonlinear theory and cloud field organization. J. Atmos. Sci., 45 , 23912415.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., G-J. Huang, V. Chandrasekar, and T. D. Keenan, 2001: An areal rainfall estimator using differential propagation phase: Evaluation using a C-band radar and a dense gauge network in the tropics. J. Atmos. Oceanic Technol., 18 , 18101818.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., T. Tang, and V. Chandrasekar, 2004: Evaluation of a new polarimetrically based ZR relation. J. Atmos. Oceanic Technol., 21 , 612622.

    • Search Google Scholar
    • Export Citation
  • Charron, M., and E. Manzini, 2002: Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59 , 923941.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123 , 357388. doi:10.1002/qj.49712353806.

    • Search Google Scholar
    • Export Citation
  • Chun, H-Y., and J-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55 , 32993310.

    • Search Google Scholar
    • Export Citation
  • Chun, H-Y., M-D. Song, J-W. Kim, and J-J. Baik, 2001: Effects of gravity wave drag induced by cumulus convection on the atmospheric general circulation. J. Atmos. Sci., 58 , 302319.

    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., and Coauthors, 1998: MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere. Geophys. Res. Lett., 25 , 939942.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102 , 2605326076.

  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111 , 23412361.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., M-J. Yang, D. N. Slinn, and R. G. Brown, 1993: Toward more accurate wave-permeable boundary conditions. Mon. Wea. Rev., 121 , 604620.

    • Search Google Scholar
    • Export Citation
  • Fovell, R., D. Durran, and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49 , 14271442.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 , 1003. doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, and E. Roeckner, 2002: Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29 , 1245. doi:10.1029/2002GL014756.

    • Search Google Scholar
    • Export Citation
  • Gordley, L. L., and J. M. Russell III, 1981: Rapid inversion of limb radiance data using an emissivity growth approximation. Appl. Opt., 20 , 807813.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., R. A. Vincent, and P. T. May, 2004: Darwin Area Wave Experiment (DAWEX) field campaign to study gravity wave generation and propagation. J. Geophys. Res., 109 , D20S01. doi:10.1029/2003JD004393.

    • Search Google Scholar
    • Export Citation
  • Hase, F., and M. Höpfner, 1999: Atmospheric ray path modeling for radiative transfer algorithms. Appl. Opt., 38 , 31293133. doi:10.1364/AO.38.003129.

    • Search Google Scholar
    • Export Citation
  • Hendrick, R. L., and G. H. Comer, 1970: Space variations of precipitation and its implications for rain gauge networks. J. Hydrol., 10 , 151162.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., 2006: Schnelle Spurengasretrieval für das Satellitenexperiment Envisat MIPAS. Tech. Rep. JUEL-4207 ISSN 0944-2952, Forschungszentrum Jülich, 143 pp.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., and M. J. Alexander, 2009: Retrieval of stratospheric temperatures from Atmospheric Infrared Sounder radiance measurements for gravity wave studies. J. Geophys. Res., 114 , D07105. doi:10.1029/2008JD011241.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40 , 24972507.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., J. H. Beres, and X. Zhou, 2002: On the vertical scale of gravity waves excited by localized thermal forcing. J. Atmos. Sci., 59 , 20192023.

    • Search Google Scholar
    • Export Citation
  • Keenan, T., K. Glasson, F. Cummings, T. S. Bird, J. Keeler, and J. Lutz, 1998: The BNRC/NCAR C-Band polarimetric (C-POL) radar system. J. Atmos. Oceanic Technol., 15 , 871886.

    • Search Google Scholar
    • Export Citation
  • Kershaw, R., 1995: Parameterization of momentum transport by convectively generated gravity waves. Quart. J. Roy. Meteor. Soc., 121 , 10231040. doi:10.1002/qj.49712152505.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., A. Kruger, and V. Nespor, 1998: Experimental and numerical studies of small-scale rainfall measurements and variability. Water Sci. Technol., 37 , 131138.

    • Search Google Scholar
    • Export Citation
  • Kuester, M., M. Alexander, and E. Ray, 2008: A model study of gravity waves over Hurricane Humberto (2001). J. Atmos. Sci., 65 , 32313246.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50 , 20262037.

  • Marshall, B. T., L. L. Gordley, and D. A. Chu, 1994: BANDPAK: Algorithms for modeling broadband transmission and radiance. J. Quant. Spectrosc. Radiat. Transf., 52 , 581599.

    • Search Google Scholar
    • Export Citation
  • May, P. T., and D. K. Rajopadhyaya, 1999: Vertical velocity characteristics of deep convection over Darwin, Australia. Mon. Wea. Rev., 127 , 10561071.

    • Search Google Scholar
    • Export Citation
  • May, P. T., and A. Ballinger, 2007: The statistical characteristics of convective cells in a monsoon regime (Darwin, Northern Australia). Mon. Wea. Rev., 135 , 8292.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42 , 950960.

    • Search Google Scholar
    • Export Citation
  • Nystuen, J. A., 1999: Relative performance of automatic rain gauges under different rainfall conditions. J. Atmos. Oceanic Technol., 16 , 10251043.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., and D. R. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53 , 29242951.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., and M. J. Alexander, 1999: Linear stratospheric gravity waves above convective thermal forcing. J. Atmos. Sci., 56 , 24342446.

    • Search Google Scholar
    • Export Citation
  • Piani, C., D. Durran, M. J. Alexander, and J. R. Holton, 2000: A numerical study of three-dimensional gravity waves triggered by deep tropical convection and their role in the dynamics of the QBO. J. Atmos. Sci., 57 , 36893702.

    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and R. Garcia, 2000: The excitation of equatorial waves by deep convection in the NCAR Community Climate Model (CCM3). J. Atmos. Sci., 57 , 34613487.

    • Search Google Scholar
    • Export Citation
  • Sato, K., 1993: Small-scale wind disturbances observed by the MU radar during the passage of Typhoon Kelly. J. Atmos. Sci., 50 , 518537.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W-K. Tao, and D. E. Johnson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43 , 10951113.

    • Search Google Scholar
    • Export Citation
  • Stockwell, R. G., L. Mansinha, and R. P. Lowe, 1996: Localization of the complex spectrum: The S transform. IEEE Trans. Signal Process., 44 , 9981001. doi:10.1109/78.492555.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, and R. Adler, 1993: Retrieval algorithms for estimating the vertical profiles of latent heat release: Their applications for TRMM. J. Meteor. Soc. Japan, 71 , 685700.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. J., and M. Hapgood, 1988: Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emissions. Planet. Space Sci., 36 , 975985.

    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., and I. M. Reid, 1983: HF Doppler measurements of mesospheric gravity wave momentum fluxes. J. Atmos. Sci., 40 , 13211333.

    • Search Google Scholar
    • Export Citation
  • Wang, L., M. J. Alexander, T. P. Bui, and M. J. Mahoney, 2006: Small-scale gravity waves in ER-2 MMS/MTP wind and temperature measurements during CRYSTAL-FACE. Atmos. Chem. Phys., 6 , 10911104.

    • Search Google Scholar
    • Export Citation
  • Wu, J., A. D. D. Genio, M-S. Yao, and A. B. Wolf, 2009: WRF and GISS SCM simulations of convective updraft properties during TWP-ICE. J. Geophys. Res., 114 , D04206. doi:10.1029/2008JD010851.

    • Search Google Scholar
    • Export Citation
  • Wu, X., and M. W. Moncrieff, 1996: Collective effects of organized convection and their approximation in general circulation models. J. Atmos. Sci., 53 , 14771495.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 203 77 3
PDF Downloads 99 31 1