• Andrews, D. G., , and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and mean zonal acceleration. J. Atmos. Sci., 33 , 20312048.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Bartels, J., , D. Peters, , and G. Schmitz, 1998: Climatological Ertel’s potential-vorticity flux and mean meridional circulation in the extratropical troposphere–lower stratosphere. Ann. Geophys., 16 , 250265.

    • Search Google Scholar
    • Export Citation
  • Bell, S. W., , and M. A. Geller, 2008: Tropopause inversion layer: Seasonal and latitudinal variations and representation in standard radiosonde data and global models. J. Geophys. Res., 113 , D05109. doi:10.1029/2007JD009022.

    • Search Google Scholar
    • Export Citation
  • Berthet, G., , J. G. Esler, , and P. H. Haynes, 2007: A Lagrangian perspective of the tropopause and the ventilation of the lowermost stratosphere. J. Geophys. Res., 112 , D18102. doi:10.1029/2006JD008295.

    • Search Google Scholar
    • Export Citation
  • Birner, T., 2006: Fine-scale structure of the extratropical tropopause region. J. Geophys. Res., 111 , D04104. doi:10.1029/2005JD006301.

  • Birner, T., 2010: Residual circulation and tropopause structure. J. Atmos. Sci., in press.

  • Birner, T., , A. Dörnbrack, , and U. Schumann, 2002: How sharp is the tropopause at midlatitudes? Geophys. Res. Lett., 29 , 1700. doi:10.1029/2002GL015142.

    • Search Google Scholar
    • Export Citation
  • Birner, T., , D. Sankey, , and T. G. Shepherd, 2006: The tropopause inversion layer in models and analyses. Geophys. Res. Lett., 33 , L14804. doi:10.1029/2006GL026549.

    • Search Google Scholar
    • Export Citation
  • Chen, P., , and W. A. Robinson, 1992: Propagation of planetary waves between the troposphere and stratosphere. J. Atmos. Sci., 49 , 25332545.

    • Search Google Scholar
    • Export Citation
  • Engel, A., and Coauthors, 2006: Highly resolved observations of trace gases in the lowermost stratosphere and upper troposphere from the Spurt project: An overview. Atmos. Chem. Phys., 6 , 283301.

    • Search Google Scholar
    • Export Citation
  • Fischer, H., and Coauthors, 2000: Tracer correlations in the northern high latitude lowermost stratosphere: Influence of cross-tropopause mass exchange. Geophys. Res. Lett., 27 , 97100.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., , R. J. Wilson, , and R. Hemler, 1999: Middle atmosphere simulated with high vertical and horizontal resolution versions of a GCM: Improvement in the cold pole bias and generation of a QBO-like oscillation in the tropics. J. Atmos. Sci., 56 , 38293846.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., , and J. Anglade, 1997: The vertical-scale cascade in atmospheric tracers due to large-scale differential advection. J. Atmos. Sci., 54 , 11211136.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., , J. F. Scinocca, , and M. D. Greenslade, 2001: Formation and maintenance of the extratropical tropopause by baroclinic eddies. Geophys. Res. Lett., 28 , 41794182.

    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., and Coauthors, 2008: Validation of ACE-FTS satellite data in the upper troposphere/lower stratosphere (UTLS) using non-coincident measurements. Atmos. Chem. Phys., 8 , 14831499.

    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., , C. D. Boone, , G. L. Manney, , and K. A. Walker, 2009: A global view of the extratropical tropopause transition layer from Atmospheric Chemistry Experiment Fourier Transform Spectrometer O3, H2O, and CO. J. Geophys. Res., 114 , D00B11. doi:10.1029/2008JD009984.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1982: On the height of the tropopause and the static stability of the troposphere. J. Atmos. Sci., 39 , 412417.

  • Hoinka, K. P., 1998: Statistics of the global tropopause pressure. Mon. Wea. Rev., 126 , 33033325.

  • Hoor, P., , H. Fischer, , L. Lange, , J. Lelieveld, , and D. Brunner, 2002: Seasonal variations of a mixing layer in the lowermost stratosphere as identified by the CO–O3 correlation from in situ measurements. J. Geophys. Res., 107 , 4044. doi:10.1029/2000JD000289.

    • Search Google Scholar
    • Export Citation
  • Hoor, P., , C. Gurk, , D. Brunner, , M. I. Hegglin, , H. Wernli, , and H. Fischer, 2004: Seasonality and extent of extratropical TST derived from in-situ CO measurements during SPURT. Atmos. Chem. Phys., 4 , 14271442.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , M. E. McIntyre, , and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., 1989: A diagnostic formulation for wave–mean flow interactions and Lagrangian-mean circulation with a hybrid vertical coordinate of pressure and isentropes. J. Meteor. Soc. Japan, 67 , 293312.

    • Search Google Scholar
    • Export Citation
  • Krebsbach, M., and Coauthors, 2006: Seasonal cycles and variability of O3 and H2O in the UT/LMS during SPURT. Atmos. Chem. Phys., 6 , 109125.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , R. D. Sharman, , T. L. Clark, , and H-M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60 , 12971321.

    • Search Google Scholar
    • Export Citation
  • Meloen, J., and Coauthors, 2003: Stratosphere–troposphere exchange: A model and method intercomparison. J. Geophys. Res., 108 , 8526. doi:10.1029/2002JD002274.

    • Search Google Scholar
    • Export Citation
  • Miyazaki, K., , and T. Iwasaki, 2005: Diagnosis of meridional ozone transport based on mass-weighted isentropic zonal means. J. Atmos. Sci., 63 , 11921208.

    • Search Google Scholar
    • Export Citation
  • Miyazaki, K., , and T. Iwasaki, 2008: The gradient genesis of stratospheric trace species in the subtropics and around the polar vortex. J. Atmos. Sci., 65 , 490508.

    • Search Google Scholar
    • Export Citation
  • Miyazaki, K., , K. Sato, , S. Watanabe, , Y. Tomikawa, , Y. Kawatani, , and M. Takahashi, 2010: Transport and mixing in the extratropical tropopause region in a high-vertical-resolution GCM. Part II: Importance of small-scale disturbances. J. Atmos. Sci., 67 , 13151336.

    • Search Google Scholar
    • Export Citation
  • Mullendore, G. L., , D. R. Durran, , and J. R. Holton, 2005: Cross-tropopause tracer transport in midlatitude convection. J. Geophys. Res., 110 , D06113. doi:10.1029/2004JD005059.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., , M. R. Schoeberl, , R. A. Plumb, , and J. E. Rosenfield, 1988: Mixing rates calculated from potential vorticity. J. Geophys. Res., 93 , 52215240.

    • Search Google Scholar
    • Export Citation
  • Pan, L. L., , W. J. Randel, , B. L. Gary, , M. J. Mahoney, , and E. J. Hintsa, 2004: Definitions and sharpness of the extratropical tropopause: A trace gas perspective. J. Geophys. Res., 109 , D23103. doi:10.1029/2004JD004982.

    • Search Google Scholar
    • Export Citation
  • Postel, G. A., , and M. H. Hitchman, 1999: Climatology of Rossby wave breaking along the subtropical tropopause. J. Atmos. Sci., 56 , 359373.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , F. Wu, , and P. Forster, 2007: The extratropical tropopause inversion layer: Global observations with GPS data, and a radiative forcing mechanism. Atmos. Sci., 64 , 44894496.

    • Search Google Scholar
    • Export Citation
  • Reid, S. J., , and G. Vaughan, 1991: Lamination in ozone profiles in the lower stratosphere. Quart. J. Roy. Meteor. Soc., 117 , 825844.

  • Rosenlof, K. H., , A. F. Tuck, , K. K. Kelly, , J. M. Russel, , and M. P. McCormick, 1997: Hemispheric asymmetries in water vapor and inferences about transport in the lower stratosphere. J. Geophys. Res., 102 , 1321313234. doi:10.1029/97JD00873.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2005: Zonal momentum balance, potential vorticity dynamics, and mass fluxes on near-surface isentropes. J. Atmos. Sci., 62 , 18841900.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., , A. R. Douglass, , R. S. Stolarski, , S. Pawson, , S. E. Strahan, , and W. Read, 2008: Comparison of lower stratospheric tropical mean vertical velocities. J. Geophys. Res., 113 , D24109. doi:10.1029/2008JD010221.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., , and J-P. Cammas, 2002: Wave breaking and mixing at the subtropical tropopause. J. Atmos. Sci., 59 , 23472361.

  • Scott, R. K., , D. G. Dritschel, , L. M. Polvani, , and D. W. Waugh, 2004: Enhancement of Rossby wave breaking by steep potential vorticity gradients in the winter stratosphere. J. Atmos. Sci., 61 , 904918.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci., 37 , 9941004.

    • Search Google Scholar
    • Export Citation
  • Son, S-W., , and L. M. Polvani, 2007: Dynamical formation of an extra-tropical tropopause inversion layer in a relatively simple general circulation model. Geophys. Res. Lett., 34 , L17806. doi:10.1029/2007GL030564.

    • Search Google Scholar
    • Export Citation
  • Sprenger, M., , and H. Wernli, 2003: A northern hemispheric climatology of cross-tropopause exchange for the ERA15 time period (1979–1993). J. Geophys. Res., 108 , 8521. doi:10.1029/2002JD002636.

    • Search Google Scholar
    • Export Citation
  • Tomikawa, Y., , K. Sato, , S. Watanabe, , Y. Kawatani, , K. Miyazaki, , and M. Takahashi, 2008: Wintertime temperature maximum at the subtropical stratopause in a T213L256 GCM. J. Geophys. Res., 113 , D17117. doi:10.1029/2008JD009786.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., 1986: Nongeostrophic theory of zonally averaged circulation. Part I: Formulation. J. Atmos. Sci., 43 , 26002618.

  • van Velthoven, P. F. J., , and H. Kelder, 1996: Estimates of stratosphere–troposphere exchange: Sensitivity to model formulation and horizontal resolution. J. Geophys. Res., 101 , 14291434.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., , and M. Takahashi, 2005: Kelvin waves and ozone Kelvin waves in the quasi-biennial oscillation and semiannual oscillation: A simulation by a high-resolution chemistry-coupled general circulation model. J. Geophys. Res., 110 , D18303. doi:10.1029/2004JD005424.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., , Y. Kawatani, , Y. Tomikawa, , K. Miyazaki, , M. Takahashi, , and K. Sato, 2008: General aspects of a T213L256 middle atmosphere general circulation model. J. Geophys. Res., 113 , D12110. doi:10.1029/2008JD010026.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., , Y. Tomikawa, , K. Sato, , Y. Kawatani, , K. Miyazaki, , and M. Takahashi, 2009: Simulation of the eastward 4-day wave in the Antarctic winter mesosphere using a gravity wave resolving general circulation model. J. Geophys. Res., 114 , D16111. doi:10.1029/2008JD011636.

    • Search Google Scholar
    • Export Citation
  • Wirth, V., 2000: Thermal versus dynamical tropopause in upper tropospheric balanced flow anomalies. Quart. J. Roy. Meteor. Soc., 126 , 299317.

    • Search Google Scholar
    • Export Citation
  • Wirth, V., , and T. Szabo, 2007: Sharpness of the extratropical tropopause in baroclinic life cycle experiments. Geophys. Res. Lett., 34 , L02809. doi:10.1029/2006GL028369.

    • Search Google Scholar
    • Export Citation
  • WMO, 1957: Definition of the tropopause. WMO Bull., 6 , 136.

  • Zängl, G., , and V. Wirth, 2002: Synoptic-scale variability of the polar and subpolar tropopause: Data analysis and idealized PV inversions. Quart. J. Roy. Meteor. Soc., 128 , 23012315.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 2
PDF Downloads 16 16 4

Transport and Mixing in the Extratropical Tropopause Region in a High-Vertical-Resolution GCM. Part I: Potential Vorticity and Heat Budget Analysis

View More View Less
  • 1 Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
  • | 2 National Institute of Polar Research, Tokyo, Japan
  • | 3 Center for Climate System Research, University of Tokyo, Kashiwa, Japan
  • | 4 Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Tokyo, Japan
© Get Permissions
Restricted access

Abstract

A high-vertical-resolution general circulation model (GCM) output has been analyzed to clarify transport and mixing processes in the extratropical tropopause region. The high-resolution GCM, with a vertical resolution of about 300 m above the extratropical upper troposphere, allows simulation of fine atmospheric structures near the tropopause, such as the extratropical tropopause transition layer (ExTL) and the tropopause inversion layer (TIL). The high-resolution GCM realistically simulates fine thermal and dynamic structures in the extratropical tropopause region. The thickness and maximum stability of the simulated TIL are consistent with observations. The high-resolution output was analyzed using a zonal mean potential vorticity (PV) equation to identify dominant transport processes in the extratropical tropopause region. In the Northern Hemisphere extratropics during winter, mean downward advection sharpens the PV gradient between the tropopause and 20 K below it, whereas latitudinal variation in isentropic mixing sharpens the vertical PV gradient between the tropopause and 10 K above it. During summer, vertical mixing substantially sharpens the vertical PV gradient at 10–25 K above the tropopause. These sharpening effects may be strongly related to the formation mechanisms of strong concentration gradients of chemical tracers around the ExTL. Mechanisms of evolution of the TIL are also discussed by analyzing a thermodynamic equation. Downward heat advection and radiation processes primarily determine the seasonality of the TIL. The analysis results suggest that the locations of the TIL and the ExTL can be similar because of common dynamic processes and interactions between constituent distributions and thermal structure.

Corresponding author address: Kazuyuki Miyazaki, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Japan 236-0001. Email: kmiyazaki@jamstec.go.jp

Abstract

A high-vertical-resolution general circulation model (GCM) output has been analyzed to clarify transport and mixing processes in the extratropical tropopause region. The high-resolution GCM, with a vertical resolution of about 300 m above the extratropical upper troposphere, allows simulation of fine atmospheric structures near the tropopause, such as the extratropical tropopause transition layer (ExTL) and the tropopause inversion layer (TIL). The high-resolution GCM realistically simulates fine thermal and dynamic structures in the extratropical tropopause region. The thickness and maximum stability of the simulated TIL are consistent with observations. The high-resolution output was analyzed using a zonal mean potential vorticity (PV) equation to identify dominant transport processes in the extratropical tropopause region. In the Northern Hemisphere extratropics during winter, mean downward advection sharpens the PV gradient between the tropopause and 20 K below it, whereas latitudinal variation in isentropic mixing sharpens the vertical PV gradient between the tropopause and 10 K above it. During summer, vertical mixing substantially sharpens the vertical PV gradient at 10–25 K above the tropopause. These sharpening effects may be strongly related to the formation mechanisms of strong concentration gradients of chemical tracers around the ExTL. Mechanisms of evolution of the TIL are also discussed by analyzing a thermodynamic equation. Downward heat advection and radiation processes primarily determine the seasonality of the TIL. The analysis results suggest that the locations of the TIL and the ExTL can be similar because of common dynamic processes and interactions between constituent distributions and thermal structure.

Corresponding author address: Kazuyuki Miyazaki, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Japan 236-0001. Email: kmiyazaki@jamstec.go.jp

Save