• An, S-I., 2000: On the slow mode of a simple air–sea coupled model: The sensitivity to the zonal phase difference between the SST and the atmospheric heating. J. Meteor. Soc. Japan, 78 , 159165.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., , E. S. Sarachik, , and A. C. Hirst, 1999: A consistent model for the large-scale steady surface atmospheric circulation in the tropics. J. Climate, 12 , 29562964.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., , and T. Yamagata, 2001: Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett., 28 , 327330.

  • Chang, P., , L. Ji, , and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature, 385 , 516518.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., , and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17 , 41434158.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., , and M. Latif, 2000: Interannual to decadal variability in the tropical Atlantic. J. Climate, 13 , 777792.

  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44 , 23242340.

  • Enfield, D. B., , A. M. Mestas-Nuñez, , D. A. Mayer, , and L. Cid-Serrano, 1999: How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J. Geophys. Res., 104 , 78417848.

    • Search Google Scholar
    • Export Citation
  • Fauchereau, N., , S. Trzaska, , Y. Richard, , P. Roucou, , and P. Camberlin, 2003: Sea-surface temperature co-variability in the southern Atlantic and Indian Oceans and its connections with the atmospheric circulation in the Southern Hemisphere. Int. J. Climatol., 23 , 663677.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., , and E. Kestenare, 2002: The surface heat flux feedback. Part I: Estimates from observations in the Atlantic and the North Pacific. Climate Dyn., 19 , 633647.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulations. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Kossin, J. P., , and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88 , 17671781.

    • Search Google Scholar
    • Export Citation
  • Lee, S-K., , and C. Wang, 2008: Tropical Atlantic decadal oscillation and its potential impact on the equatorial atmosphere–ocean dynamics: A simple model study. J. Phys. Oceanogr., 38 , 193212.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 1996: Modeling equatorial annual cycle with a linear coupled model. J. Climate, 9 , 23762385.

  • Liu, Z., , and S. Xie, 1994: Equatorward propagation of coupled air–sea disturbances with application to the annual cycle of the eastern tropical Pacific. J. Atmos. Sci., 51 , 38073822.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2543.

  • Miller, J. C. P., 1972: Parabolic cylinder functions. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, M. Abramowitz, and I. A. Stegun, Eds., Dover, 685–700.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , I. M. Held, , and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44 , 23412348.

    • Search Google Scholar
    • Export Citation
  • Nobre, P., , and J. Shukla, 1996: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9 , 24642479.

    • Search Google Scholar
    • Export Citation
  • Park, S., , C. Deser, , and M. A. Alexander, 2005: Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans. J. Climate, 18 , 45824599.

    • Search Google Scholar
    • Export Citation
  • Servain, J., 1991: Simple climatic indices for the tropical Atlantic Ocean and some applications. J. Geophys. Res., 96 , (C8). 1513715146.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., , and W. Hazeleger, 2003: Coupled variability and air–sea interaction in the South Atlantic Ocean. Climate Dyn., 21 , 559571.

    • Search Google Scholar
    • Export Citation
  • Trzaska, S., , A. W. Robertson, , J. D. Farrara, , and C. R. Mechoso, 2007: South Atlantic variability arising from air–sea coupling: Local mechanisms and tropical–subtropical interactions. J. Climate, 20 , 33453365.

    • Search Google Scholar
    • Export Citation
  • Venegas, S. A., , L. A. Mysak, , and D. N. Straub, 1997: Atmosphere–ocean coupled variability in the South Atlantic. J. Climate, 10 , 29042920.

    • Search Google Scholar
    • Export Citation
  • Wang, F., , and P. Chang, 2008a: A linear stability analysis of coupled tropical Atlantic variability. J. Climate, 21 , 24212436.

  • Wang, F., , and P. Chang, 2008b: Coupled variability and predictability in a stochastic climate model of tropical Atlantic. J. Climate, 21 , 62476259.

    • Search Google Scholar
    • Export Citation
  • Worley, S. J., , S. D. Woodruff, , R. W. Reynolds, , S. J. Lubker, , and N. Lott, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25 , 823842.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , B. P. Kirtman, , and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res., 113 , D05104. doi:10.1029/2007JD009316.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., 1996: Westward propagation of latitudinal asymmetry in a coupled ocean–atmosphere model. J. Atmos. Sci., 53 , 32363250.

  • Xie, S-P., 1999: A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J. Climate, 12 , 6470.

  • Xie, S-P., , and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A , 340350.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., , and J. M. Jin, 1996: Computation of Special Functions. John Wiley & Sons, 717 pp.

  • Zhou, Z., , and J. A. Carton, 1998: Latent heat flux and interannual variability of the coupled atmosphere–ocean system. J. Atmos. Sci., 55 , 494501.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 5
PDF Downloads 23 23 5

Thermodynamic Coupled Modes in the Tropical Atmosphere–Ocean: An Analytical Solution

View More View Less
  • 1 Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
© Get Permissions
Restricted access

Abstract

The present study provides a consistent and unified solution for the two types of thermodynamical coupled modes in the atmosphere–ocean climate system: the tropical meridional mode and the subtropical dipole mode. The solution is derived analytically from a linear model that couples a simple atmosphere to a slab ocean via the wind–evaporation–SST (WES) feedback. For a mean zonal wind, the results show that the wind (hence latent heat flux) anomaly and the SST anomaly differ in phase such that the tropical mode propagates downwind and the subtropical modes propagate upwind, with both modes being damped by the SST-driven component of latent heat flux. Despite the existence of positive WES feedback, the large-scale subtropical modes are always stable, while the tropical mode can become unstable only when the air–sea coupling is strong and the mean wind is easterly. Furthermore, the mean meridional winds break the equatorial symmetry and enable the coupled modes to intensify in the Southern (Northern) Hemisphere for a southerly (northerly) component. For realistic parameter values, these thermodynamical coupled modes have periods and damping time scales in years; hence, they may play important roles in the tropical interannual-to-decadal climate variability.

Corresponding author address: Faming Wang, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, Shandong, China 266071. Email: faming_wang@ms.qdio.ac.cn

Abstract

The present study provides a consistent and unified solution for the two types of thermodynamical coupled modes in the atmosphere–ocean climate system: the tropical meridional mode and the subtropical dipole mode. The solution is derived analytically from a linear model that couples a simple atmosphere to a slab ocean via the wind–evaporation–SST (WES) feedback. For a mean zonal wind, the results show that the wind (hence latent heat flux) anomaly and the SST anomaly differ in phase such that the tropical mode propagates downwind and the subtropical modes propagate upwind, with both modes being damped by the SST-driven component of latent heat flux. Despite the existence of positive WES feedback, the large-scale subtropical modes are always stable, while the tropical mode can become unstable only when the air–sea coupling is strong and the mean wind is easterly. Furthermore, the mean meridional winds break the equatorial symmetry and enable the coupled modes to intensify in the Southern (Northern) Hemisphere for a southerly (northerly) component. For realistic parameter values, these thermodynamical coupled modes have periods and damping time scales in years; hence, they may play important roles in the tropical interannual-to-decadal climate variability.

Corresponding author address: Faming Wang, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, Shandong, China 266071. Email: faming_wang@ms.qdio.ac.cn

Save