• Anstey, J. A., , and T. G. Shepherd, 2008: Response of the northern stratospheric polar vortex to the seasonal alignment of QBO phase transitions. Geophys. Res. Lett., 35 , L22810. doi:10.1029/2008GL035721.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., , and T. J. Dunkerton, 1998: Quasi-biennial modulation of the Southern Hemisphere stratospheric polar vortex. Geophys. Res. Lett., 25 , 33433346.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., , and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104 , 3093730946.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., , and L. J. Gray, 2005: Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data. Geophys. Res. Lett., 32 , L09806. doi:10.1029/2004GL022328.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39 , 179229.

  • Baldwin, M. P., , D. B. Stephenson, , D. W. J. Thompson, , T. J. Dunkerton, , A. J. Charlton, , and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301 , 636640.

    • Search Google Scholar
    • Export Citation
  • Beagley, S. R., , J. de Grandpré, , J. N. Koshyk, , N. A. McFarlane, , and T. G. Shepherd, 1997: Radiative–dynamical climatology of the first-generation Canadian middle atmosphere model. Atmos.–Ocean, 35 , 293331.

    • Search Google Scholar
    • Export Citation
  • Bridger, A. F., 1984: A numerical test of connections between the stratospheric sudden warming and the quasi-biennial oscillation. J. Geophys. Res., 89 , 48264832.

    • Search Google Scholar
    • Export Citation
  • Calvo, N., , M. A. Giorgetta, , and C. Peña-Ortiz, 2007: Sensitivity of the boreal winter circulation in the middle atmosphere to the quasi-biennial oscillation in MAECHAM5 simulations. J. Geophys. Res., 112 , D10124. doi:10.1029/2006JD007844.

    • Search Google Scholar
    • Export Citation
  • Campbell, L. J., , and T. G. Shepherd, 2005: Constraints on wave drag parameterization schemes for simulating the quasi-biennial oscillation. Part I: Gravity wave forcing. J. Atmos. Sci., 62 , 41784195.

    • Search Google Scholar
    • Export Citation
  • Chen, P., 1996: The influences of zonal flow on wave breaking and tropical–extratropical interaction in the lower stratosphere. J. Atmos. Sci., 53 , 23792392.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1990: Annual variation of deseasonalized mean flow acceleration in the equatorial lower stratosphere. J. Meteor. Soc. Japan, 68 , 499508.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102 , 2605326076.

  • Dunkerton, T. J., , and M. P. Baldwin, 1991: Quasi-biennial modulation of planetary-wave fluxes in the Northern Hemisphere winter. J. Atmos. Sci., 48 , 10431061.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , and S. Solomon, 1987: A possible relationship between interannual variability in Antarctic ozone and the quasi-biennial oscillation. Geophys. Res. Lett., 14 , 848851.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., , E. Manzini, , E. Roeckner, , M. Esch, , and L. Bengtsson, 2006: Climatology and forcing of the quasi-biennial oscillation in the MAECHEM5 model. J. Climate, 19 , 38823901.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., 2003: The influence of the equatorial upper stratosphere on stratospheric sudden warmings. Geophys. Res. Lett., 30 , 1166. doi:10.1029/2002GL016430.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., , E. F. Drysdale, , T. J. Dunkerton, , and B. N. Lawrence, 2001a: Model studies of the interannual variability of the northern-hemisphere stratospheric winter circulation: The role of the quasi-biennial oscillation. Quart. J. Roy. Meteor. Soc., 127 , 14131432.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., , S. J. Phipps, , T. J. Dunkerton, , M. P. Baldwin, , E. F. Drysdale, , and M. R. Allen, 2001b: A data study of the influence of the equatorial upper stratosphere on northern-hemisphere stratospheric sudden warmings. Quart. J. Roy. Meteor. Soc., 127 , 19852003.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., , S. Sparrow, , M. Juckes, , A. O’Neill, , and D. G. Andrews, 2003: Flow regimes in the winter stratosphere of the northern hemisphere. Quart. J. Roy. Meteor. Soc., 129 , 925945.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., , S. Crooks, , C. Pascoe, , S. Sparrow, , and M. Palmer, 2004: Solar and QBO influences on the timing of stratospheric sudden warmings. J. Atmos. Sci., 61 , 27772796.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1998: Effects of an imposed quasi-biennial oscillation in a comprehensive troposphere–stratosphere–mesosphere general circulation model. J. Atmos. Sci., 55 , 23932418.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., , A. Hertzog, , F. Vial, , and G. Stenchikov, 2004: Longitudinal variation of the stratospheric quasi-biennial oscillation. J. Atmos. Sci., 61 , 383402.

    • Search Google Scholar
    • Export Citation
  • Hampson, J., , and P. Haynes, 2006: Influence of the equatorial QBO on the extratropical stratosphere. J. Atmos. Sci., 63 , 936951.

  • Hitchman, M. H., , and A. S. Huesmann, 2009: Seasonal influence of the quasi-biennial oscillation on stratospheric jets and Rossby wave breaking. J. Atmos. Sci., 66 , 935946.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , and H-C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37 , 22002208.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , and J. Austin, 1991: The influence of the equatorial QBO on sudden stratospheric warmings. J. Atmos. Sci., 48 , 607618.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., , and S. Yoden, 1998: Wave–mean flow interaction associated with a QBO-like oscillation simulated in a simplified GCM. J. Atmos. Sci., 55 , 502526.

    • Search Google Scholar
    • Export Citation
  • Huesmann, A. S., , and M. H. Hitchman, 2001: The stratospheric quasi-biennial oscillation in the NCEP reanalyses: Climatological structures. J. Geophys. Res., 106 , 1185911874.

    • Search Google Scholar
    • Export Citation
  • Karpetchko, A., , and G. Nikulin, 2004: Influence of early winter upward wave activity flux on midwinter circulation in the stratosphere and troposphere. J. Climate, 17 , 44434452.

    • Search Google Scholar
    • Export Citation
  • Kodera, K., 1991: The solar and equatorial QBO influences on the stratospheric circulation during the early northern-hemisphere winter. Geophys. Res. Lett., 18 , 10231026.

    • Search Google Scholar
    • Export Citation
  • Kodera, K., , M. Chiba, , and K. Shibata, 1991: A general circulation model study of the solar and QBO modulation of the stratospheric circulation during the northern hemisphere winter. Geophys. Res. Lett., 18 , 12091212.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., 1987: Sunspots, the QBO, and the stratospheric temperature in the north polar region. Geophys. Res. Lett., 14 , 535537.

  • Labitzke, K., , and H. van Loon, 1988: Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: The troposphere and stratosphere in the northern hemisphere winter. J. Atmos. Terr. Phys., 50 , 197206.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R., , and J. R. Holton, 1968: A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25 , 10951107.

  • Logan, J. A., and Coauthors, 2003: Quasibiennial oscillation in tropical ozone as revealed by ozonesondes and satellite data. J. Geophys. Res., 108 , 4244. doi:10.1029/2002JD002170.

    • Search Google Scholar
    • Export Citation
  • Lu, H., , M. P. Baldwin, , L. J. Gray, , and M. J. Jarvis, 2008: Decadal-scale changes in the effect of the QBO on the northern stratospheric polar vortex. J. Geophys. Res., 113 , D10114. doi:10.1029/2007JD009647.

    • Search Google Scholar
    • Export Citation
  • Maruyama, T., 1991: Annual and QBO-synchronized variations of lower-stratospheric equatorial wave activity over Singapore during 1961–1989. J. Meteor. Soc. Japan, 69 , 219231.

    • Search Google Scholar
    • Export Citation
  • Matthes, K., , U. Langematz, , L. J. Gray, , K. Kodera, , and K. Labitzke, 2004: Improved 11-year solar signal in the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM). J. Geophys. Res., 109 , D06101. doi:10.1029/2003JD004012.

    • Search Google Scholar
    • Export Citation
  • Naito, Y., , and I. Hirota, 1997: Interannual variability of the northern winter stratospheric circulation related to the QBO and the solar cycle. J. Meteor. Soc. Japan, 75 , 925937.

    • Search Google Scholar
    • Export Citation
  • Naito, Y., , and S. Yoden, 2006: Behavior of planetary waves before and after stratospheric sudden warming events in several phase of the equatorial QBO. J. Atmos. Sci., 63 , 16371649.

    • Search Google Scholar
    • Export Citation
  • Naujokat, B., 1986: An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. J. Atmos. Sci., 43 , 18731877.

    • Search Google Scholar
    • Export Citation
  • Niwano, M., , and M. Takahashi, 1998: The influence of the equatorial QBO on the Northern Hemisphere winter circulation of a GCM. J. Meteor. Soc. Japan, 76 , 453461.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., 1997: Interaction of extratropical Rossby waves with westerly quasi-biennial oscillation winds. J. Geophys. Res., 102 , 1946119469.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., , and M. L. Salby, 1990: Coupling of the quasi-biennial oscillation and the extratropical circulation in the stratosphere through planetary wave transport. J. Atmos. Sci., 47 , 650673.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., , and R. E. Young, 1992: Modeling the quasi-biennial oscillation’s effect on the winter stratospheric circulation. J. Atmos. Sci., 49 , 24372448.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., , and T. J. Dunkerton, 1994: Seasonal development of the extratropical QBO in a numerical model of the middle atmosphere. J. Atmos. Sci., 51 , 37063721.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. A., , and L. J. Gray, 2005: Modeling the atmospheric response to solar irradiance changes using a GCM with a realistic QBO. Geophys. Res. Lett., 32 , L24701. doi:10.1029/2005GL023809.

    • Search Google Scholar
    • Export Citation
  • Pascoe, C. L., , L. J. Gray, , and A. A. Scaife, 2006: A GCM study of the influence of equatorial winds on the timing of sudden stratospheric warmings. Geophys. Res. Lett., 33 , L06825. doi:10.1029/2005GL024715.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , D. W. Waugh, , and R. A. Plumb, 1995: On the subtropical edge of the stratospheric surf zone. J. Atmos. Sci., 52 , 12881309.

    • Search Google Scholar
    • Export Citation
  • Randel, W., , and F. Wu, 1996: Isolation of the ozone QBO in SAGE II data by singular-value decomposition. J. Atmos. Sci., 53 , 25462559.

    • Search Google Scholar
    • Export Citation
  • Randel, W., and Coauthors, 2004: The SPARC intercomparison of middle-atmosphere climatologies. J. Climate, 17 , 9861003.

  • Salby, M., , and P. Callaghan, 2000: Connection between the solar cycle and the QBO: The missing link. J. Climate, 13 , 328338.

  • Scinocca, J. F., 2003: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J. Atmos. Sci., 60 , 667682.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., , N. A. McFarlane, , M. Lazare, , J. Li, , and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8 , 70557074.

    • Search Google Scholar
    • Export Citation
  • Takahashi, M., 1996: Simulation of the stratospheric quasi-biennial oscillation using a general circulation model. Geophys. Res. Lett., 23 , 661664.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • von Storch, H., , and F. R. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wallace, J. M., , R. L. Panetta, , and J. Estberg, 1993: Representation of the equatorial stratospheric quasi-biennial oscillation in EOF phase space. J. Atmos. Sci., 50 , 17511762.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 47 47 1
PDF Downloads 30 30 2

Influence of the Quasi-Biennial Oscillation on the Extratropical Winter Stratosphere in an Atmospheric General Circulation Model and in Reanalysis Data

View More View Less
  • 1 Department of Physics, University of Toronto, Toronto, Ontario, Canada
  • | 2 Canadian Centre for Climate Modelling and Analysis, University of Victoria, Victoria, British Columbia, Canada
© Get Permissions
Restricted access

Abstract

The interannual variability of the stratospheric polar vortex during winter in both hemispheres is observed to correlate strongly with the phase of the quasi-biennial oscillation (QBO) in tropical stratospheric winds. It follows that the lack of a spontaneously generated QBO in most atmospheric general circulation models (AGCMs) adversely affects the nature of polar variability in such models. This study examines QBO–vortex coupling in an AGCM in which a QBO is spontaneously induced by resolved and parameterized waves.

The QBO–vortex coupling in the AGCM compares favorably to that seen in reanalysis data [from the 40-yr ECMWF Re-Analysis (ERA-40)], provided that careful attention is given to the definition of QBO phase. A phase angle representation of the QBO is employed that is based on the two leading empirical orthogonal functions of equatorial zonal wind vertical profiles. This yields a QBO phase that serves as a proxy for the vertical structure of equatorial winds over the whole depth of the stratosphere and thus provides a means of subsampling the data to select QBO phases with similar vertical profiles of equatorial zonal wind. Using this subsampling, it is found that the QBO phase that induces the strongest polar vortex response in early winter differs from that which induces the strongest late-winter vortex response. This is true in both hemispheres and for both the AGCM and ERA-40.

It follows that the strength and timing of QBO influence on the vortex may be affected by the partial seasonal synchronization of QBO phase transitions that occurs both in observations and in the model. This provides a mechanism by which changes in the strength of QBO–vortex correlations may exhibit variability on decadal time scales. In the model, such behavior occurs in the absence of external forcings or interannual variations in sea surface temperatures.

* Additional affiliation: University of Victoria, Victoria, British Columbia, Canada

Corresponding author address: James A. Anstey, Canadian Centre for Climate Modelling and Analysis, University of Victoria, P.O. Box 3065, STN CSC, Victoria, BC V8W 3V6, Canada. Email: janstey@atmosp.physics.utoronto.ca

Abstract

The interannual variability of the stratospheric polar vortex during winter in both hemispheres is observed to correlate strongly with the phase of the quasi-biennial oscillation (QBO) in tropical stratospheric winds. It follows that the lack of a spontaneously generated QBO in most atmospheric general circulation models (AGCMs) adversely affects the nature of polar variability in such models. This study examines QBO–vortex coupling in an AGCM in which a QBO is spontaneously induced by resolved and parameterized waves.

The QBO–vortex coupling in the AGCM compares favorably to that seen in reanalysis data [from the 40-yr ECMWF Re-Analysis (ERA-40)], provided that careful attention is given to the definition of QBO phase. A phase angle representation of the QBO is employed that is based on the two leading empirical orthogonal functions of equatorial zonal wind vertical profiles. This yields a QBO phase that serves as a proxy for the vertical structure of equatorial winds over the whole depth of the stratosphere and thus provides a means of subsampling the data to select QBO phases with similar vertical profiles of equatorial zonal wind. Using this subsampling, it is found that the QBO phase that induces the strongest polar vortex response in early winter differs from that which induces the strongest late-winter vortex response. This is true in both hemispheres and for both the AGCM and ERA-40.

It follows that the strength and timing of QBO influence on the vortex may be affected by the partial seasonal synchronization of QBO phase transitions that occurs both in observations and in the model. This provides a mechanism by which changes in the strength of QBO–vortex correlations may exhibit variability on decadal time scales. In the model, such behavior occurs in the absence of external forcings or interannual variations in sea surface temperatures.

* Additional affiliation: University of Victoria, Victoria, British Columbia, Canada

Corresponding author address: James A. Anstey, Canadian Centre for Climate Modelling and Analysis, University of Victoria, P.O. Box 3065, STN CSC, Victoria, BC V8W 3V6, Canada. Email: janstey@atmosp.physics.utoronto.ca

Save