• Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33 , 851864.

  • Beheng, K. D., 1994: A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33 , 193206.

  • Beheng, K. D., , and G. Doms, 1986: A general formulation of collection rates of cloud and raindrops using the kinetic equation and comparison with parameterizations. Contrib. Atmos. Phys., 59 , 6684.

    • Search Google Scholar
    • Export Citation
  • Berry, E. X., , and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection. Part II: Single initial distributions. J. Atmos. Sci., 31 , 18251831.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J-L., 1991: Parameterization of the condensation process: A theoretical approach. J. Atmos. Sci., 48 , 264282.

  • Burnet, F., , and J-L. Brenguier, 2008: Entrainment and mixing in warm convective clouds: effects on droplet spectra and on the onset of precipitation. Proc. 15th Int. Conf. on Clouds and Precipitation, Cancun, Mexico, ICCP, 1.7.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., , and R. K. Hall, 1955: A census of cumulus-cloud height versus precipitation in the vicinity of Puerto Rico during the winter and spring of 1953–1954. J. Meteor., 12 , 176178.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., 1974: A study in cloud phase parameterization using the gamma distribution. J. Atmos. Sci., 31 , 142155.

  • Feingold, G., 1993: Parameterization of the evaporation of rainfall for use in general circulation models. J. Atmos. Sci., 50 , 34543467.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., 1996: Microphysics of marine stratocumulus clouds with two drizzle modes. J. Atmos. Sci., 53 , 16491662.

  • Ghan, S. J., , C. C. Chuang, , and J. E. Penner, 1993: A parameterization of cloud droplet nucleation Part I: Single aerosol type. Atmos. Res., 30 , 197221.

    • Search Google Scholar
    • Export Citation
  • Gillespie, D. T., 1972: The stochastic coalescence model for cloud droplet growth. J. Atmos. Sci., 29 , 14961510.

  • Heus, T., , H. J. J. Jonker, , H. E. A. Van den Akker, , E. J. Griffith, , M. Koutek, , and F. H. Post, 2009: A statistical approach to the life cycle analysis of cumulus clouds selected in a virtual reality environment. J. Geophys. Res., 114 , D06208. doi:10.1029/2008JD010917.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., , and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128 , 229243.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., , and J. A. Curry, 2006: Aerosol size spectra and CCN activity spectra: Reconciling the lognormal, algebraic, and power laws. J. Geophys. Res., 111 , D12202. doi:10.1029/2005JD006532.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , and P. H. Daum, 2004: Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61 , 15391548.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , and E. Roeckner, 1996: Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Climate Dyn., 12 , 557572.

    • Search Google Scholar
    • Export Citation
  • Lüpkes, C., , K. D. Beheng, , and G. Doms, 1989: A parameterization scheme for simulating collision/coalescence of water drops. Contrib. Atmos. Phys., 62 , 289306.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J., , and M. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62 , 30513064.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J., , and M. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62 , 30653081.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and W. Grabowski, 2007: Comparison of bulk and bin warm rain microphysics models using a kinematic framework. J. Atmos. Sci., 64 , 28392861.

    • Search Google Scholar
    • Export Citation
  • Müller, H., 1928: Zur allgemeinen Theorie der raschen Koagulation. Kolloidchem. Beihefte, 27 , 223250.

  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Reisner, J., , R. M. Rasmussen, , and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., 2000: On the “tuning” of autoconversion parameterizations in climate models. J. Geophys. Res., 105 , 1549515507.

  • Seifert, A., 2008: On the parameterization of evaporation of raindrops as simulated by a one-dimensional rainshaft model. J. Atmos. Sci., 65 , 36083619.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., , and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion, and self-collection. Atmos. Res., 59–60 , 265281.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., , A. Khain, , U. Blahak, , and K. D. Beheng, 2005: Possible effects of collisional breakup on mixed-phase deep convection simulated by a spectral (bin) cloud model. J. Atmos. Sci., 62 , 19171931.

    • Search Google Scholar
    • Export Citation
  • Snodgrass, E. R., , L. D. Girolamo, , and R. M. Rauber, 2009: Precipitation characteristics of trade wind clouds during RICO derived from radar, satellite, and aircraft measurements. J. Appl. Meteor., 48 , 464483.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R., 1988: On the scaling of equations governing the evolution of raindrop size distributions. J. Atmos. Sci., 45 , 10911092.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , and A. Seifert, 2008: Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection. J. Meteor. Soc. Japan, 86 , 143162.

    • Search Google Scholar
    • Export Citation
  • von der Emde, K., , and U. Wacker, 1993: Comments on the relationship between aerosol spectra, equilibrium drop size spectra, and CCN spectra. Contrib. Atmos. Phys., 66 , 157162.

    • Search Google Scholar
    • Export Citation
  • von Smoluchowski, M., 1916: Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Physik. Zeitschr., 17 , 557599.

    • Search Google Scholar
    • Export Citation
  • von Smoluchowski, M., 1917: Versuch einer mathematischen Theorie der Koagulationskinetik kolloidaler Lösungen. Z. Phys. Chem., 92 , 129168.

    • Search Google Scholar
    • Export Citation
  • Wacker, U., , and A. Seifert, 2001: Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description. Atmos. Res., 58 , 1939.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 55 6
PDF Downloads 59 59 6

Microphysical Scaling Relations in a Kinematic Model of Isolated Shallow Cumulus Clouds

View More View Less
  • 1 Deutscher Wetterdienst, Offenbach, Germany
  • | 2 Max-Planck-Institut für Meteorologie, Hamburg, Germany, and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
© Get Permissions
Restricted access

Abstract

The rain formation in shallow cumulus clouds by condensational growth and collision–coalescence of liquid drops is revisited with the aim of understanding the controls on precipitation efficiency for idealized cloud drafts. For the purposes of this analysis, a one-dimensional kinematic cloud model is introduced, which permits the efficient exploration of many microphysical aspects of liquid shallow clouds with both spectral and two-moment bulk microphysical formulations. Based on the one-dimensional model and the insights gained from both microphysical approaches, scaling relations are derived that provide a link between microphysical and macroscopic cloud properties. By introducing the concept of a macroscopic autoconversion time scale, the rain formation can be traced back to quantities such as cloud depth, average vertical velocity, lapse rate, and cloud lifetime. The one-dimensional model also suggests that the precipitation efficiency can be expressed as a function of the ratio of the macroscopic autoconversion time scale and cloud lifetime and that it exhibits threshold-like behavior.

Corresponding author address: Dr. Axel Seifert, Deutscher Wetterdienst, Frankfurterstr. 135, 63067 Offenbach, Germany. Email: axel.seifert@dwd.de

Abstract

The rain formation in shallow cumulus clouds by condensational growth and collision–coalescence of liquid drops is revisited with the aim of understanding the controls on precipitation efficiency for idealized cloud drafts. For the purposes of this analysis, a one-dimensional kinematic cloud model is introduced, which permits the efficient exploration of many microphysical aspects of liquid shallow clouds with both spectral and two-moment bulk microphysical formulations. Based on the one-dimensional model and the insights gained from both microphysical approaches, scaling relations are derived that provide a link between microphysical and macroscopic cloud properties. By introducing the concept of a macroscopic autoconversion time scale, the rain formation can be traced back to quantities such as cloud depth, average vertical velocity, lapse rate, and cloud lifetime. The one-dimensional model also suggests that the precipitation efficiency can be expressed as a function of the ratio of the macroscopic autoconversion time scale and cloud lifetime and that it exhibits threshold-like behavior.

Corresponding author address: Dr. Axel Seifert, Deutscher Wetterdienst, Frankfurterstr. 135, 63067 Offenbach, Germany. Email: axel.seifert@dwd.de

Save