The Climatology of the Middle Atmosphere in a Vertically Extended Version of the Met Office’s Climate Model. Part I: Mean State

S. C. Hardiman Met Office Hadley Centre, Exeter, Devon, United Kingdom

Search for other papers by S. C. Hardiman in
Current site
Google Scholar
PubMed
Close
,
N. Butchart Met Office Hadley Centre, Exeter, Devon, United Kingdom

Search for other papers by N. Butchart in
Current site
Google Scholar
PubMed
Close
,
S. M. Osprey National Centre for Atmospheric Science, University of Oxford, Oxford, United Kingdom

Search for other papers by S. M. Osprey in
Current site
Google Scholar
PubMed
Close
,
L. J. Gray National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom

Search for other papers by L. J. Gray in
Current site
Google Scholar
PubMed
Close
,
A. C. Bushell Met Office, Exeter, Devon, United Kingdom

Search for other papers by A. C. Bushell in
Current site
Google Scholar
PubMed
Close
, and
T. J. Hinton Met Office Hadley Centre, Exeter, Devon, United Kingdom

Search for other papers by T. J. Hinton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The climatology of a stratosphere-resolving version of the Met Office’s climate model is studied and validated against ECMWF reanalysis data. Ensemble integrations are carried out at two different horizontal resolutions. Along with a realistic climatology and annual cycle in zonal mean zonal wind and temperature, several physical effects are noted in the model. The time of final warming of the winter polar vortex is found to descend monotonically in the Southern Hemisphere, as would be expected for purely radiative forcing. In the Northern Hemisphere, however, the time of final warming is driven largely by dynamical effects in the lower stratosphere and radiative effects in the upper stratosphere, leading to the earliest transition to westward winds being seen in the midstratosphere. A realistic annual cycle in stratospheric water vapor concentrations—the tropical “tape recorder”—is captured. Tropical variability in the zonal mean zonal wind is found to be in better agreement with the reanalysis for the model run at higher horizontal resolution because the simulated quasi-biennial oscillation has a more realistic amplitude. Unexpectedly, variability in the extratropics becomes less realistic under increased resolution because of reduced resolved wave drag and increased orographic gravity wave drag. Overall, the differences in climatology between the simulations at high and moderate horizontal resolution are found to be small.

Corresponding author address: Steven Hardiman, Met Office, FitzRoy Road, Exeter, Devon EX1 3PB, United Kingdom. Email: steven.hardiman@metoffice.gov.uk

Abstract

The climatology of a stratosphere-resolving version of the Met Office’s climate model is studied and validated against ECMWF reanalysis data. Ensemble integrations are carried out at two different horizontal resolutions. Along with a realistic climatology and annual cycle in zonal mean zonal wind and temperature, several physical effects are noted in the model. The time of final warming of the winter polar vortex is found to descend monotonically in the Southern Hemisphere, as would be expected for purely radiative forcing. In the Northern Hemisphere, however, the time of final warming is driven largely by dynamical effects in the lower stratosphere and radiative effects in the upper stratosphere, leading to the earliest transition to westward winds being seen in the midstratosphere. A realistic annual cycle in stratospheric water vapor concentrations—the tropical “tape recorder”—is captured. Tropical variability in the zonal mean zonal wind is found to be in better agreement with the reanalysis for the model run at higher horizontal resolution because the simulated quasi-biennial oscillation has a more realistic amplitude. Unexpectedly, variability in the extratropics becomes less realistic under increased resolution because of reduced resolved wave drag and increased orographic gravity wave drag. Overall, the differences in climatology between the simulations at high and moderate horizontal resolution are found to be small.

Corresponding author address: Steven Hardiman, Met Office, FitzRoy Road, Exeter, Devon EX1 3PB, United Kingdom. Email: steven.hardiman@metoffice.gov.uk

Save
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Bannister, R. N., A. O’Neill, A. R. Gregory, and K. M. Nissen, 2004: The role of the south-east Asian monsoon and other seasonal features in creating the ‘tape-recorder’ signal in the Unified Model. Quart. J. Roy. Meteor. Soc., 130 , 15311554. doi:10.1256/qj.03.106.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and J. Austin, 1998: Middle atmosphere climatologies from the troposphere–stratosphere configuration of the UKMO’s Unified Model. J. Atmos. Sci., 55 , 27822809.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Climate Dyn., 27 , 727741. doi:10.1007/s00382-006-0162-4.

    • Search Google Scholar
    • Export Citation
  • Dall’Amico, M., L. J. Gray, K. H. Rosenlof, A. A. Scaife, K. P. Shine, and P. A. Stott, 2010: Stratospheric temperature trends: Impact of ozone variability and the QBO. Climate Dyn., 34 , 381398. doi:10.1007/s00382-009-0604-x.

    • Search Google Scholar
    • Export Citation
  • Edwards, J., and A. Slingo, 1996: Studies with a flexible new radiation code. 1. Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122 , 689719.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2006: Assessment of temperature, trace species, and ozone in chemistry–climate model simulations of the recent past. J. Geophys. Res., 111 , D22308. doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2008: Overview of the New CCMVal reference and sensitivity simulations in support of upcoming ozone and climate assessments and the planned SPARC CCMVal. SPARC Newsletter, No. 30, SPARC Office, Toronto, ON, Canada, 20–26.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112 , D09301. doi:10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48 , 651678.

    • Search Google Scholar
    • Export Citation
  • Ineson, S., and A. A. Scaife, 2008: The role of the stratosphere in the European climate response to El Niño. Nature Geosci., 2 , 3236. doi:10.1038/ngeo381.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., T. L. Schneider, R. W. Portmann, and S. Solomon, 1999: Climate forcing due to tropospheric and stratospheric ozone. J. Geophys. Res., 104 , (D24). 3123931254. doi:10.1029/1999JD900991.

    • Search Google Scholar
    • Export Citation
  • Lott, F., L. Fairhead, F. Hourdin, and P. Levan, 2005: The stratospheric version of LMDz: Dynamical climatologies, Arctic oscillation, and impact on the surface climate. Climate Dyn., 25 , 851868. doi:10.1007/s00382-005-0064-x.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., M. A. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19 , 38633881.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., M. A. Ringer, V. D. Pope, A. Jones, C. Dearden, and T. J. Hinton, 2006: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology. J. Climate, 19 , 12741301.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., and T. G. Shepherd, 2009: Simulated anthropogenic changes in the Brewer–Dobson circulation, including its extension to high latitudes. J. Climate, 22 , 15161540.

    • Search Google Scholar
    • Export Citation
  • Monge-Sanz, B. M., M. P. Chipperfield, A. J. Simmons, and S. M. Uppala, 2007: Mean age of air and transport in a CTM: Comparison of different ECMWF analyses. Geophys. Res. Lett., 34 , L04801. doi:10.1029/2006GL028515.

    • Search Google Scholar
    • Export Citation
  • Morgenstern, O., P. Braesicke, F. M. O’Connor, A. C. Bushell, C. E. Johnson, S. M. Osprey, and J. A. Pyle, 2009: Evaluation of the new UKCA climate-composition model—Part 1: The stratosphere. Geosci. Model Dev., 2 , 4357.

    • Search Google Scholar
    • Export Citation
  • Mote, P., and Coauthors, 1996: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101 , 39894006.

    • Search Google Scholar
    • Export Citation
  • Osprey, S. M., L. J. Gray, A. C. Bushnell, N. Butchart, S. C. Hardiman, and T. J. Hinton, 2009: The climatology of the middle atmosphere in a vertically extended version of the Met Office’s climate model. Part II: Variability. J. Atmos. Sci., submitted.

    • Search Google Scholar
    • Export Citation
  • Priestley, A., 1993: A quasi-conservative version of the semi-Lagrangian advection scheme. Mon. Wea. Rev., 121 , 621629.

  • Randel, W. J., and F. Wu, 1999: A stratospheric ozone trends data set for global modeling studies. Geophys. Res. Lett., 26 , 30893092.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, S. J. Oltmans, K. Rosenlof, and G. E. Nedoluha, 2004: Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J. Atmos. Sci., 61 , 21332148.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., 1995: Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res., 100 , (D3). 51735191.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., and G. C. Reid, 2008: Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection. J. Geophys. Res., 113 , D06107. doi:10.1029/2007JD009109.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and J. R. Knight, 2008: Ensemble simulations of the cold European winter of 2005–2006. Quart. J. Roy. Meteor. Soc., 134 , 16471659.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., N. Butchart, C. D. Warner, D. Stainforth, W. Norton, and J. Austin, 2000: Realistic quasi-biennial oscillations in a simulation of the global climate. Geophys. Res. Lett., 27 , 34813484.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., N. Butchart, C. D. Warner, and R. Swinbank, 2002: Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model. J. Atmos. Sci., 59 , 14731489.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. Plummer, 2008: Technical note: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8 , 70557074.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. F. Scinocca, 2010: The influence of the basic state on the Northern Hemisphere circulation response to climate change. J. Climate, 23 , 14341446.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. F. Scinocca, and P. J. Kushner, 2008: Impact of the stratosphere on tropospheric climate change. Geophys. Res. Lett., 35 , L12706. doi:10.1029/2008GL033573.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., A. Untch, C. Jakob, P. Kållberg, and P. Undén, 1999: Stratospheric water vapour and tropical tropopause temperatures in ECMWF analyses and multi-year simulations. Quart. J. Roy. Meteor. Soc., 125 , 353386. doi:10.1002/qj.49712555318.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37 , 275316.

  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Untch, A., and A. J. Simmons, 1999: Increased stratospheric resolution in the ECMWF forecasting system. ECMWF Newsletter, No. 82, European Centre for Medium-Range Weather Forecasting, Reading, United Kingdom, 2–8. [Available online at http://www.ecmwf.int/publications/newsletters/pdf/82.pdf].

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012. doi:10.1256/qj.04.176.

  • Warner, C. D., and M. E. McIntyre, 1999: Toward an ultra-simple spectral gravity wave parameterization for general circulation models. Earth Planets Space, 51 , 475484.

    • Search Google Scholar
    • Export Citation
  • Zhong, W., S. M. Osprey, L. J. Gray, and J. D. Haigh, 2008: Influence of the prescribed solar spectrum on calculations of atmospheric temperature. Geophys. Res. Lett., 35 , L22813. doi:10.1029/2008GL035993.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 319 126 7
PDF Downloads 94 28 2