• Ambaum, M. H. P., , B. J. Hoskins, , and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation? J. Climate, 14 , 34953507.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., , and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115 , 10831126.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., , and M. S. Halpert, 1995: Atlas of intraseasonal and interannual variability, 1986–1993. NOAA Atlas 12, Climate Prediction Center, NOAA/NWS/MNC. [Available from the Climate Prediction Center, 5200 Auth Road, Camp Springs, MD 20746].

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , C. Smith, , and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5 , 541560.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22 , 859881.

    • Search Google Scholar
    • Export Citation
  • Coëtlogon, G. D., and Coauthors, 2006: Gulf Stream variability in five oceanic general circulation models. J. Phys. Oceanogr., 36 , 21192135.

    • Search Google Scholar
    • Export Citation
  • Davis, R., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6 , 249266.

    • Search Google Scholar
    • Export Citation
  • Deser, C., 2000: On the teleconnectivity of the “Arctic Oscillation”. Geophys. Res. Lett., 27 , 779782.

  • Feldstein, S. B., , and C. Franzke, 2006: Are the North Atlantic Oscillation and the Northern Annular Mode distinguishable? J. Atmos. Sci., 63 , 29152930.

    • Search Google Scholar
    • Export Citation
  • Hu, A., , C. Rooth, , R. Bleck, , and C. Deser, 2002: NAO influence on sea ice extent in the Eurasian coastal region. Geophys. Res. Lett., 29 , 2053. doi:10.1029/2001GL014293.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269 , 676679.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , Y. Kushnir, , G. Ottersen, , and M. Visbeck, 2003: An overview of the North Atlantic oscillation. The North Atlantic Oscillation: Climate Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

    • Search Google Scholar
    • Export Citation
  • Ishi, Y., , and K. Hanawa, 2005: Large-scale variabilities of wintertime wind stress curl field in the North Pacific and their relation to atmospheric teleconnection patterns. Geophys. Res. Lett., 32 , L10607. doi:10.1029/2004GL022330.

    • Search Google Scholar
    • Export Citation
  • Itoh, H., 2002: True versus apparent arctic oscillation. Geophys. Res. Lett., 29 , 1268. doi:10.1029/2001GL013978.

  • Kaiser, H. F., 1958: The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23 , 187200.

  • Kaiser, H. F., 1959: Computer program for Varimax rotation in factor analysis. Educ. Psychol. Meas., 19 , 413420.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Marshall, J., , H. Johnson, , and J. Goodman, 2001a: A study of the interaction of the North Atlantic oscillation with ocean circulation. J. Climate, 14 , 13991421.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2001b: North Atlantic climate variability: Phenomena, impacts, and mechanisms. Int. J. Climatol., 21 , 18631898.

    • Search Google Scholar
    • Export Citation
  • Maslanik, J. A., , M. C. Serreze, , and R. G. Barry, 1996: Recent decreases in Arctic summer ice cover and linkages to atmospheric circulation anomalies. Geophys. Res. Lett., 23 , 16771680.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6 , 293335.

  • Tanimoto, Y., , and S-P. Xie, 2002: Inter-hemispheric decadal variations in SST, surface wind, heat flux and cloud cover over the Atlantic Ocean. J. Meteor. Soc. Japan, 80 , 11991219.

    • Search Google Scholar
    • Export Citation
  • Taylor, A. H., , and J. A. Stephens, 1998: The North Atlantic Oscillation and the latitude of the Gulf Stream. Tellus, 50A , 134142.

  • Thompson, D. W. J., , and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109 , 784812.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and D. W. J. Thompson, 2002: The Pacific center of action of the Northern Hemisphere annular mode: Real or artifact? J. Climate, 15 , 19871991.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , C. Smith, , and Q. Jiang, 1990: Spatial patterns of atmosphere–ocean interaction in the northern winter. J. Climate, 3 , 990998.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 1
PDF Downloads 29 29 0

The Wintertime Wind Stress Curl Field in the North Atlantic and Its Relation to Atmospheric Teleconnection Patterns

View More View Less
  • 1 Department of Geophysics, Graduate School of Science, and Institute for International Advanced Interdisciplinary Research, International Advanced Research and Education Organization, Tohoku University, Sendai, Japan
  • | 2 Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan
© Get Permissions
Restricted access

Abstract

Adopting a rotated empirical orthogonal function (REOF) analysis and a maximum covariance analysis (MCA), characteristics of the wintertime wind stress curl (WSC) anomaly field in the North Atlantic are investigated. In terms of both temporal variation and spatial distribution, the first four leading modes of WSC show a one-to-one relation with four atmospheric teleconnection patterns over the North Atlantic sector: the North Atlantic Oscillation (NAO) and the east Atlantic (EA), tropical–Northern Hemisphere (TNH), and Pacific–North American (PNA) patterns. These four patterns characterize the WSC variations over the different regions in the North Atlantic: NAO and EA over the eastern side of the basin, TNH over the central part of the basin, and PNA over the western side of the basin.

Corresponding author address: Shusaku Sugimoto, Department of Geophysics, Graduate School of Science, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578, Japan. Email: sugimoto@pol.gp.tohoku.ac.jp

Abstract

Adopting a rotated empirical orthogonal function (REOF) analysis and a maximum covariance analysis (MCA), characteristics of the wintertime wind stress curl (WSC) anomaly field in the North Atlantic are investigated. In terms of both temporal variation and spatial distribution, the first four leading modes of WSC show a one-to-one relation with four atmospheric teleconnection patterns over the North Atlantic sector: the North Atlantic Oscillation (NAO) and the east Atlantic (EA), tropical–Northern Hemisphere (TNH), and Pacific–North American (PNA) patterns. These four patterns characterize the WSC variations over the different regions in the North Atlantic: NAO and EA over the eastern side of the basin, TNH over the central part of the basin, and PNA over the western side of the basin.

Corresponding author address: Shusaku Sugimoto, Department of Geophysics, Graduate School of Science, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578, Japan. Email: sugimoto@pol.gp.tohoku.ac.jp

Save