• Ackerman, A. S., , O. B. Toon, , and P. V. Hobbs, 1995: A model for particle microphysics, turbulent mixing, and radiative transfer in the stratocumulus-topped marine boundary layer and comparison with measurements. J. Atmos. Sci., 52 , 12041236.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., , and S. N. Grover, 1974: Numerical collision efficiencies for small raindrops colliding with micron size particles. J. Atmos. Sci., 31 , 543550.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The supercooling of water. Proc. Phys. Soc. London, B66 , 688694.

  • Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55 , 22842293.

  • Bott, A., 2000: A flux method for the numerical solution of the stochastic collection equation: Extension to two-dimensional particle distributions. J. Atmos. Sci., 57 , 284294.

    • Search Google Scholar
    • Export Citation
  • Chen, J-P., , and D. Lamb, 1994: The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition. J. Atmos. Sci., 51 , 12061222.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , and S. M. Kreidenweis, 2002: Cloud processing of aerosol as modeled by a large eddy simulation with coupled microphysics and aqueous chemistry. J. Geophys. Res., 107 , 4687. doi:10.1029/2002JD002054.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , S. M. Kreidenweis, , B. Stevens, , and W. R. Cotton, 1996: Numerical simulation of stratocumulus processing of cloud condensation nuclei through collision–coalescence. J. Geophys. Res., 101 , 2139121402.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , A. J. Heymsfield, , and A. Bansemer, 2006: A test of ice self-collection kernels using aircraft data. J. Atmos. Sci., 63 , 651666.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , A. J. Heymsfield, , A. Bansemer, , and C. H. Twohy, 2008: Determination of the combined ventilation factor and capacitance for ice crystal aggregates from airborne observations in a tropical anvil cloud. J. Atmos. Sci., 65 , 376391.

    • Search Google Scholar
    • Export Citation
  • Flossmann, A. I., 1993: The effect of the impaction scavenging efficiency on the wet deposition by a convective warm cloud. Tellus, 45B , 3439.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., and Coauthors, 2004: Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei. Science, 304 , 718722.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., , A. S. Ackerman, , G. McFarquhar, , G. Zhang, , M. R. Poellot, , P. J. DeMott, , A. J. Prenni, , and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results. J. Geophys. Res., 112 , D24202. doi:10.1029/2007JD008646.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9 , 20582082.

    • Search Google Scholar
    • Export Citation
  • Geresdi, I., 1998: Idealized simulation of the Colorado hailstorm case: Comparison of bulk and detailed microphysics. Atmos. Res., 45 , 237252.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., , J. M. Straka, , and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132 , 26102627.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 1998: Toward cloud-resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55 , 32833298.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 1999: A parameterization of cloud microphysics for long-term cloud-resolving modeling of tropical convection. Atmos. Res., 52 , 1741.

    • Search Google Scholar
    • Export Citation
  • Gu, Y., , and K. N. Liou, 2000: Interactions of radiation, microphysics, and turbulence in the evolution of cirrus clouds. J. Atmos. Sci., 57 , 24632479.

    • Search Google Scholar
    • Export Citation
  • Hall, W. D., 1980: A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37 , 24862507.

    • Search Google Scholar
    • Export Citation
  • Hall, W. D., , and H. R. Pruppacher, 1976: The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33 , 19952006.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., , and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249 , 2628.

  • Hashino, T., , and G. Tripoli, 2007: The Spectral Ice Habit Prediction System (SHIPS). Part I: Model description and simulation of vapor deposition processes. J. Atmos. Sci., 64 , 22102237.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1982: A comparative study of the rates of development of potential graupel and hail embryos in high plains storms. J. Atmos. Sci., 39 , 28672897.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and M. Kajikawa, 1987: An improved approach to calculating terminal velocities of plate-like crystals and graupel. J. Atmos. Sci., 44 , 10881099.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , G-J. van Zadelhoff, , D. P. Donovan, , F. Fabry, , R. J. Hogan, , and A. J. Illingworth, 2007: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part II: Evaluation and parameterizations of ensemble ice particle sedimentation velocities. J. Atmos. Sci., 64 , 10681088.

    • Search Google Scholar
    • Export Citation
  • Khain, A., , and I. Sednev, 1996: Simulation of precipitation formation in the eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43 , 77110.

    • Search Google Scholar
    • Export Citation
  • Khain, A., , M. B. Pinsky, , M. Shapiro, , and A. Pokrovsky, 2001: Collision rate of small graupel and water drops. J. Atmos. Sci., 58 , 25712595.

    • Search Google Scholar
    • Export Citation
  • Khain, A., , A. Pokrovsky, , M. Pinsky, , A. Seifert, , and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61 , 29632982.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., , and J. A. Curry, 2002: Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum. J. Atmos. Sci., 59 , 18721884.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , G. A. Isaac, , and J. Hallett, 1999: Ice particle habits in Arctic clouds. Geophys. Res. Lett., 26 , 12991302.

  • Leary, C. A., , and R. A. Houze, 1979: Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci., 36 , 669679.

    • Search Google Scholar
    • Export Citation
  • Lew, J. K., , and H. R. Pruppacher, 1983: A theoretical determination of the capture efficiency of small columnar ice crystals by large cloud drops. J. Atmos. Sci., 40 , 139145.

    • Search Google Scholar
    • Export Citation
  • Lew, J. K., , D. E. Kingsmill, , and D. C. Montague, 1985: A theoretical study of the collision efficiency of small planar ice crystals colliding with large supercooled water drops. J. Atmos. Sci., 42 , 857862.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., , H. E. Willoughby, , and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41 , 28362848.

    • Search Google Scholar
    • Export Citation
  • Magono, C., , and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ., 2 , 321335.

  • Martin, J. J., , P. K. Wang, , H. R. Pruppacher, , and R. L. Pitter, 1981: A numerical study of the effect of electric charges on the efficiency with which planar ice crystals collect supercooled cloud drops. J. Atmos. Sci., 38 , 24622469.

    • Search Google Scholar
    • Export Citation
  • Matson, R. J., , and A. W. Huggins, 1980: The direct measurement of the sizes, shapes, and kinematics of falling hailstones. J. Atmos. Sci., 37 , 11071125.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , H. Zhang, , G. Heymsfield, , R. Hood, , J. Dudhia, , J. B. Halverson, , and F. Marks, 2006: Factors affecting the evolution of Hurricane Erin (2001) and the distributions of hydrometeors: Role of microphysical processes. J. Atmos. Sci., 63 , 127150.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., , P. J. DeMott, , and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31 , 708721.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., , and M. K. Yau, 2006a: A multimoment bulk microphysics parameterization. Part III: Control simulation of a hailstorm. J. Atmos. Sci., 63 , 31143136.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., , and M. K. Yau, 2006b: A multimoment bulk microphysics parameterization. Part IV: Sensitivity experiments. J. Atmos. Sci., 63 , 31373159.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1995: An analytical model predicting the evolution of ice particle size distributions. Ph.D. dissertation, University of Nevada, Reno, 181 pp.

  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53 , 17101723.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal fall velocities, highlighting aggregates. J. Atmos. Sci., 62 , 16371644.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , R. Zhang, , and R. L. Pitter, 1990: Mass–dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29 , 153163.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , A. Huggins, , and V. Grubisic, 2006: A new snow growth model with application to radar precipitation estimates. Atmos. Res., 82 , 218.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and W. W. Grabowski, 2007: Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci., 64 , 28392861.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and W. W. Grabowski, 2008: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65 , 15281548.

    • Search Google Scholar
    • Export Citation
  • Ovtchinnikov, M., , and Y. L. Kogan, 2000: An investigation of ice production mechanisms in small cumuliform clouds using a 3D model with explicit microphysics. Part I: Model description. J. Atmos. Sci., 57 , 29893003.

    • Search Google Scholar
    • Export Citation
  • Pflaum, J. C., 1980: Hail formation via microphysical recycling. J. Atmos. Sci., 37 , 160173.

  • Pflaum, J. C., , and H. R. Pruppacher, 1979: A wind tunnel investigation of the growth of graupel initiated from frozen drops. J. Atmos. Sci., 36 , 680689.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., , and A. Khain, 1998: Some effects of cloud turbulence on water–ice and ice–ice collisions. Atmos. Res., 47–48 , 6986.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., , A. Khain, , D. Rosenfeld, , and A. Pokrovsky, 1998: Comparison of collision velocity differences of drops and graupel particles in a very turbulent cloud. Atmos. Res., 49 , 99113.

    • Search Google Scholar
    • Export Citation
  • Pitter, R. L., 1977: A reexamination of riming on thin ice plates. J. Atmos. Sci., 34 , 684685.

  • Pitter, R. L., , and H. R. Pruppacher, 1974: A numerical investigation of collision efficiencies of simple ice plates colliding with supercooled water drops. J. Atmos. Sci., 31 , 551559.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Rasmussen, R., , and A. J. Heymsfield, 1985: A generalized form for impact velocities used to determine graupel accretional densities. J. Atmos. Sci., 42 , 22752279.

    • Search Google Scholar
    • Export Citation
  • Reisen, T., , Z. Levin, , and S. Tzivion, 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos. Sci., 53 , 497519.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., , and P. V. Hobbs, 1984: The mesoscale and microscale structure of organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41 , 29492972.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., 2008: On the parameterization of the evaporation of raindrops as simulated by a one-dimensional rainshaft model. J. Atmos. Sci., 65 , 36083619.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 1984: A fully multidimensional positive definite advection transport algorithm with small implicit diffusion. J. Comput. Phys., 54 , 325362.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., , and L. G. Margolin, 1998: MPDATA: A finite-difference solver for geophysical flows. J. Comput. Phys., 140 , 459480.

    • Search Google Scholar
    • Export Citation
  • Szumowski, M. J., , W. W. Grabowski, , and H. T. Ochs III, 1998: Simple two-dimensional kinematic framework designed to test warm rain microphysical models. Atmos. Res., 45 , 299326.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , R. M. Rasmussen, , and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132 , 519542.

    • Search Google Scholar
    • Export Citation
  • Wacker, U., , and A. Seifert, 2001: Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description. Atmos. Res., 58 , 1939.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., , and W. Ji, 1992: Collision efficiencies of ice crystals at low–intermediate Reynolds numbers colliding with supercooled cloud droplets: A numerical study. J. Atmos. Sci., 57 , 10011009.

    • Search Google Scholar
    • Export Citation
  • Wu, X., 2002: Effects of ice microphysics on tropical radiative–convective–oceanic quasi-equilibrium states. J. Atmos. Sci., 59 , 18851897.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., , and K. Gao, 1989: Numerical simulation of an intense squall line during 10–11 June 1985 PRE-STORM. Part II: Rear inflow, surface pressure perturbations and stratiform precipitation. Mon. Wea. Rev., 117 , 20672094.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 39 39 4
PDF Downloads 29 29 5

An Improved Representation of Rimed Snow and Conversion to Graupel in a Multicomponent Bin Microphysics Scheme

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions
Restricted access

Abstract

This paper describes the development of a new multicomponent detailed bin ice microphysics scheme that predicts the number concentration of ice as well as the rime mass mixing ratio in each mass bin. This allows for local prediction of the rime mass fraction. In this approach, the ice particle mass size, projected area size, and terminal velocity–size relationships vary as a function of particle mass and rimed mass fraction, based on a simple conceptual model of rime accumulation in the crystal interstices that leads to an increase in particle mass, but not in its maximum size, until a complete “filling in” with rime and conversion to graupel occurs. This approach allows a natural representation of the gradual transition from unrimed crystals to rimed crystals and graupel during riming. The new ice scheme is coupled with a detailed bin representation of the liquid hydrometeors and applied in an idealized 2D kinematic flow model representing the evolution of a mixed-phase precipitating cumulus. Results using the bin scheme are compared with simulations using a two-moment bulk scheme employing the same approach (i.e., separate prediction of bulk ice mixing ratio from vapor deposition and riming, allowing for local prediction of bulk rime mass fraction). The bin and bulk schemes produce similar results in terms of ice and liquid water paths and optical depths, as well as the timing of the onset and peak surface precipitation rate. However, the peak domain-average surface precipitation rate produced by the bulk scheme is about 4 times that in the bin simulation. The bin scheme is also compared with simulations that assume the ice particles consist entirely of either unrimed snow or graupel. While overall results are fairly similar, the onset and timing of the peak domain-average surface precipitation rate are substantially delayed in the simulations that treat the ice particles as either unrimed snow or graupel. These results suggest the importance of representing different ice types, including partially rimed crystals, for this case.

Corresponding author address: Hugh Morrison, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307–3000. Email: morrison@ucar.edu

Abstract

This paper describes the development of a new multicomponent detailed bin ice microphysics scheme that predicts the number concentration of ice as well as the rime mass mixing ratio in each mass bin. This allows for local prediction of the rime mass fraction. In this approach, the ice particle mass size, projected area size, and terminal velocity–size relationships vary as a function of particle mass and rimed mass fraction, based on a simple conceptual model of rime accumulation in the crystal interstices that leads to an increase in particle mass, but not in its maximum size, until a complete “filling in” with rime and conversion to graupel occurs. This approach allows a natural representation of the gradual transition from unrimed crystals to rimed crystals and graupel during riming. The new ice scheme is coupled with a detailed bin representation of the liquid hydrometeors and applied in an idealized 2D kinematic flow model representing the evolution of a mixed-phase precipitating cumulus. Results using the bin scheme are compared with simulations using a two-moment bulk scheme employing the same approach (i.e., separate prediction of bulk ice mixing ratio from vapor deposition and riming, allowing for local prediction of bulk rime mass fraction). The bin and bulk schemes produce similar results in terms of ice and liquid water paths and optical depths, as well as the timing of the onset and peak surface precipitation rate. However, the peak domain-average surface precipitation rate produced by the bulk scheme is about 4 times that in the bin simulation. The bin scheme is also compared with simulations that assume the ice particles consist entirely of either unrimed snow or graupel. While overall results are fairly similar, the onset and timing of the peak domain-average surface precipitation rate are substantially delayed in the simulations that treat the ice particles as either unrimed snow or graupel. These results suggest the importance of representing different ice types, including partially rimed crystals, for this case.

Corresponding author address: Hugh Morrison, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307–3000. Email: morrison@ucar.edu

Save