Droplet Growth in Warm Water Clouds Observed by the A-Train. Part I: Sensitivity Analysis of the MODIS-Derived Cloud Droplet Sizes

Takashi Y. Nakajima Research and Information Center, Tokai University, Tokyo, Japan

Search for other papers by Takashi Y. Nakajima in
Current site
Google Scholar
PubMed
Close
,
Kentaroh Suzuki Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Kentaroh Suzuki in
Current site
Google Scholar
PubMed
Close
, and
Graeme L. Stephens Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Graeme L. Stephens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the sensitivity of the retrieved cloud droplet radii (CDR) to the vertical inhomogeneity of droplet radii, including the existence of a drizzle mode in clouds. The focus of this study is warm water-phase clouds. Radiative transfer simulations of three near-infrared Moderate Resolution Imaging Spectroradiometer (MODIS) channels centered on wavelengths of 1.6, 2.1, and 3.7 μm reveal that the retrieved CDR are strongly influenced by the vertical inhomogeneity of droplet size including (i) the existence of small cloud droplets at the cloud top and (ii) the existence of the drizzle mode. The influence of smaller droplets at cloud top affects the 3.7-μm channel most, whereas the presence of drizzle influences radiances of both the 2.1- and 1.6-μm channels more than the 3.7-μm channel. Differences in the CDR obtained from MODIS 1.6-, 2.1-, and 3.7-μm channels that appear in global analysis of MODIS retrievals and the CDR derived from data collected during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) intensive observation period in 1987 can be explained by the results obtained from the sensitivity experiments of this study.

Corresponding author address: Takashi Y. Nakajima, Research and Information Center, Tokai University, 2-28-4, Tomigaya, Shibuya-ku, Tokyo 151-0063, Japan. Email: nkjm@yoyogi.ycc.u-tokai.ac.jp

Abstract

This study examines the sensitivity of the retrieved cloud droplet radii (CDR) to the vertical inhomogeneity of droplet radii, including the existence of a drizzle mode in clouds. The focus of this study is warm water-phase clouds. Radiative transfer simulations of three near-infrared Moderate Resolution Imaging Spectroradiometer (MODIS) channels centered on wavelengths of 1.6, 2.1, and 3.7 μm reveal that the retrieved CDR are strongly influenced by the vertical inhomogeneity of droplet size including (i) the existence of small cloud droplets at the cloud top and (ii) the existence of the drizzle mode. The influence of smaller droplets at cloud top affects the 3.7-μm channel most, whereas the presence of drizzle influences radiances of both the 2.1- and 1.6-μm channels more than the 3.7-μm channel. Differences in the CDR obtained from MODIS 1.6-, 2.1-, and 3.7-μm channels that appear in global analysis of MODIS retrievals and the CDR derived from data collected during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) intensive observation period in 1987 can be explained by the results obtained from the sensitivity experiments of this study.

Corresponding author address: Takashi Y. Nakajima, Research and Information Center, Tokai University, 2-28-4, Tomigaya, Shibuya-ku, Tokyo 151-0063, Japan. Email: nkjm@yoyogi.ycc.u-tokai.ac.jp

Save
  • Benedetti, A., P. Gabriel, and G. L. Stephens, 2002: Properties of reflected sunlight derived from a Green’s function method. J. Quant. Spectrosc. Radiat. Transf., 72 , 201225.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32 , L20806. doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19 , 34453482.

  • Chang, F-L., and Z. Li, 2002: Estimating the vertical variation of cloud droplet effective radius using multispectral near-infrared satellite measurements. J. Geophys. Res., 107 , 4257. doi:10.1029/2001JD000766.

    • Search Google Scholar
    • Export Citation
  • Chang, F-L., and Z. Li, 2003: Retrieving vertical profiles of water-cloud droplet effective radius: Algorithm modification and preliminary application. J. Geophys. Res., 108 , 4763. doi:10.1029/2003JD003906.

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7 , 465497.

    • Search Google Scholar
    • Export Citation
  • Kawamoto, K., T. Nakajima, and T. Y. Nakajima, 2001: A global determination of cloud microphysics with AVHRR remote sensing. J. Climate, 14 , 20542068.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5 , 715737.

  • Lohmann, U., P. Stier, C. Hoose, S. Ferrachat, S. Kloster, E. Roeckner, and J. Zhang, 2007: Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmos. Chem. Phys., 7 , 34253446.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51 , 18231842.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., T. Y. Nakajima, T. Nakajima, M. Kachi, R. Oki, and S. Kuroda, 2002a: Physical properties of maritime low clouds as retrieved by combined use of Tropical Rainfall Measurement Mission Microwave Imager and Visible/Infrared Scanner: Algorithm. J. Geophys. Res., 107 , 4083. doi:10.1029/2001JD000743.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., T. Y. Nakajima, T. Nakajima, M. Kachi, and K. Suzuki, 2002b: Physical properties of maritime low clouds as retrieved by combined use of Tropical Rainfall Measuring Mission Microwave Imager and Visible/Infrared Scanner 2. Climatology of warm clouds and rain. J. Geophys. Res., 107 , 4367. doi:10.1029/2001JD001269.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. Tanaka, 1986: Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. J. Quant. Spectrosc. Radiat. Transf., 35 , 1321.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. Tanaka, 1988: Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transf., 40 , 5169.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., M. D. King, J. D. Spinhirne, and L. F. Radke, 1991: Determination of the optical thickness and effective radius of clouds from reflected solar radiation measurements. Part II: Marine stratocumulus observations. J. Atmos. Sci., 48 , 728751.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., and T. Nakajima, 1995: Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J. Atmos. Sci., 52 , 40434059.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., H. Masunaga, and T. Nakajima, 2009: Near-global scale retrievals of the cloud optical and microphysical properties from the Midori-II GLI and AMSR data. J. Remote Sens. Soc. Japan, 29 , 2939.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., K. Suzuki, and G. L. Stephens, 2010: Droplet growth in warm water clouds observed by the A-Train. Part II: A multisensor view. J. Atmos. Sci., 67 , 18971907.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., 2000: Vertical photon transport in cloud remote sensing problems. J. Geophys. Res., 105 , 2291922935.

  • Rawlins, F., and J. S. Foot, 1990: Remotely sensed measurements of stratocumulus properties during FIRE using the C130 aircraft multi-channel radiometer. J. Atmos. Sci., 47 , 24882504.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S-C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27 , 25022509.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and S. C. Tsay, 1990: On the cloud absorption anomaly. Quart. J. Roy. Meteor. Soc., 116 , 671704.

  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113 , D00A18. doi:10.1029/2008jd009982.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. P., 1992: Sensitivity of remotely sensed effective radius of cloud droplets to changes in LOWTRAN version. J. Atmos. Sci., 49 , 25642569.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., J. Pelon, and M. P. McCormick, 2003: The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, and Z. Liu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4893), doi:10.1117/12.466539.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34 , L19803. doi:10.1029/2007gl030135.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 551 183 2
PDF Downloads 287 89 0