Factors Affecting the Predictability of Hurricane Humberto (2007)

Jason A. Sippel NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Jason A. Sippel in
Current site
Google Scholar
PubMed
Close
and
Fuqing Zhang Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Fuqing Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study uses ensemble Kalman filter analyses and short-range ensemble forecasts to study factors affecting the predictability of Hurricane Humberto, which made landfall along the Texas coast in 2007. Humberto is known for both its rapid intensification and extreme forecast uncertainty, which makes it an ideal case in which to examine the origins of tropical cyclone strength forecast error. Statistical correlation is used to determine why some ensemble members strengthen the incipient low into a hurricane and others do not. During the analysis period, it is found that variations in midlevel moisture, low-level convective instability, and strength of a front to the north of the cyclone likely lead to differences in net precipitation, which ultimately leads to storm strength spread. Stronger storms are favored when the atmosphere is more moist and unstable and when the front is weaker, possibly because some storms in the ensemble begin entraining cooler and drier postfrontal air during this period. Later during the free forecast, variable entrainment of postfrontal air becomes a leading cause of strength spread. Surface moisture differences are the primary contributor to intensity forecast differences, and convective instability differences play a secondary role. Eventually mature tropical cyclone dynamics and differences in landfall time result in very rapid growth of ensemble spread. These results are very similar to a previous study that investigated a 2004 Gulf of Mexico low with a different model and analysis technique, which gives confidence that they are relevant to tropical cyclone formation and intensification in general. Finally, the rapid increase in forecast uncertainty despite relatively modest differences in initial conditions highlights the need for ensembles and advanced data assimilation techniques.

Corresponding author address: Dr. Jason A. Sippel, NASA GSFC, Code 613.1, Greenbelt, MD 2077. Email: jason.sippel@nasa.gov

Abstract

This study uses ensemble Kalman filter analyses and short-range ensemble forecasts to study factors affecting the predictability of Hurricane Humberto, which made landfall along the Texas coast in 2007. Humberto is known for both its rapid intensification and extreme forecast uncertainty, which makes it an ideal case in which to examine the origins of tropical cyclone strength forecast error. Statistical correlation is used to determine why some ensemble members strengthen the incipient low into a hurricane and others do not. During the analysis period, it is found that variations in midlevel moisture, low-level convective instability, and strength of a front to the north of the cyclone likely lead to differences in net precipitation, which ultimately leads to storm strength spread. Stronger storms are favored when the atmosphere is more moist and unstable and when the front is weaker, possibly because some storms in the ensemble begin entraining cooler and drier postfrontal air during this period. Later during the free forecast, variable entrainment of postfrontal air becomes a leading cause of strength spread. Surface moisture differences are the primary contributor to intensity forecast differences, and convective instability differences play a secondary role. Eventually mature tropical cyclone dynamics and differences in landfall time result in very rapid growth of ensemble spread. These results are very similar to a previous study that investigated a 2004 Gulf of Mexico low with a different model and analysis technique, which gives confidence that they are relevant to tropical cyclone formation and intensification in general. Finally, the rapid increase in forecast uncertainty despite relatively modest differences in initial conditions highlights the need for ensembles and advanced data assimilation techniques.

Corresponding author address: Dr. Jason A. Sippel, NASA GSFC, Code 613.1, Greenbelt, MD 2077. Email: jason.sippel@nasa.gov

Save
  • Bei, N., and F. Zhang, 2007: Impacts of initial condition errors on mesoscale predictability of heavy precipitation along the mei-yu front in China. Quart. J. Roy. Meteor. Soc., 133 , 8399.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, and Y. Kurihara, 1993: Numerical simulations of tropical cylone–ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98 , 2324523263.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., 1983: Ocean temperature changes induced by tropical cyclones. Ph.D. dissertation, The Pennsylvania State University, 278 pp.

  • Cecil, D. J., and E. J. Zipser, 1999: Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon. Wea. Rev., 127 , 103123.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16 , 219233.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction System (SHIPS). Wea. Forecasting, 20 , 531543.

    • Search Google Scholar
    • Export Citation
  • Doswell III, C. A., and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9 , 625629.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., T. D. B. Lambert, and M. A. Boothe, 2007: Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Wea. Forecasting, 22 , 747762.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585605.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46 , 34313456.

  • Franklin, J. L., 2005: 2004 National Hurricane Center forecast verification report. NHC, 46 pp. [Available online at http://www.nhc.boulder.noaa.gov/verification/pdfs/Verification_2004.pdf].

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., and R. D. Torn, 2008: Ensemble synoptic analysis. Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 147–162.

    • Search Google Scholar
    • Export Citation
  • Hawblitzel, D. P., F. Zhang, Z. Meng, and C. A. Davis, 2007: Probabilistic evaluation of the dynamics and predictability of the mesoscale convective vortex of 10–13 June 2003. Mon. Wea. Rev., 135 , 15441563.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44 , 828841.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61 , 12091232.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., S. S. Chen, B. F. Smull, W. C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315 , 12351238.

    • Search Google Scholar
    • Export Citation
  • Islam, S., R. L. Bras, and K. A. Emanuel, 1993: Predictability of mesoscale rainfalls in the tropics. J. Appl. Meteor., 32 , 297310.

  • Kerns, B., and E. Zipser, 2009: Four years of tropical ERA-40 vorticity maxima tracks. Part II: Differences between developing and nondeveloping disturbances. Mon. Wea. Rev., 137 , 25762591.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nichols, T. A. Cram, and A. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63 , 355386.

    • Search Google Scholar
    • Export Citation
  • Nolan, D., E. D. Rappin, and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative–convective equilibrium. Quart. J. Roy. Meteor. Soc., 133 , 20852107.

    • Search Google Scholar
    • Export Citation
  • Olson, D. A., N. W. Junker, and B. Korty, 1995: Evaluation of 33 years of quantitative precipitation forecasting at the NMC. Wea. Forecasting, 10 , 498511.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., and F. Zhang, 2008: A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. J. Atmos. Sci., 65 , 34403459.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131 , 16631677.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Ensemble-based sensitivity analysis applied to African easterly waves. Wea. Forecasting, 25 , 6178.

  • Van Sang, N., R. K. Smith, and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134 , 563582.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2005: Dynamics and structure of mesoscale error covariance of a winter cyclone estimated through short-range ensemble forecasts. Mon. Wea. Rev., 133 , 28762893.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66 , 19441961.

  • Zhang, F., C. Snyder, and R. Rotunno, 2002: Mesoscale predictability of the “surprise” snowstorm of 24–25 January 2000. Mon. Wea. Rev., 130 , 16171632.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60 , 11731185.

  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132 , 12381253.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., A. M. Odins, and J. W. Nielsen-Gammon, 2006: Mesoscale predictability of an extreme warm-season precipitation event. Wea. Forecasting, 21 , 149166.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Convection-resolving experiments and multistage error growth dynamics. J. Atmos. Sci., 64 , 35793594.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137 , 21052125.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 397 125 11
PDF Downloads 250 78 3