The Mutual Interaction between External Rossby Waves and Thermal Forcing: The Subpolar Regions

Isidoro Orlanski Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Isidoro Orlanski in
Current site
Google Scholar
PubMed
Close
and
Silvina Solman Centro de Investigaciones para el Mar y la Atmosfera, CONICET-UBA, Ciudad Universitaria, Buenos Aires, Argentina

Search for other papers by Silvina Solman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors hypothesize a simple feedback mechanism between external Rossby waves and diabatic heating from convection. This mechanism could explain the large amplitude that external Rossby waves attain as they propagate to mid- and high latitudes. A series of experiments has been carried out with a core dynamic global spectral model. These simulations with the idealized atmospheric GCM and a simple parameterization of thermal forcing proportional to the low-level wave meridional velocity suggest that external Rossby waves can be enhanced by convection, which they themselves induce. It is shown that in the tropospheric upper levels the amplitude of the external waves can be twice as large with feedback as for a control simulation that does not allow feedback.

Corresponding author address: Isidoro Orlanski, Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ 08540. Email: isidoro.orlanski@noaa.gov

Abstract

The authors hypothesize a simple feedback mechanism between external Rossby waves and diabatic heating from convection. This mechanism could explain the large amplitude that external Rossby waves attain as they propagate to mid- and high latitudes. A series of experiments has been carried out with a core dynamic global spectral model. These simulations with the idealized atmospheric GCM and a simple parameterization of thermal forcing proportional to the low-level wave meridional velocity suggest that external Rossby waves can be enhanced by convection, which they themselves induce. It is shown that in the tropospheric upper levels the amplitude of the external waves can be twice as large with feedback as for a control simulation that does not allow feedback.

Corresponding author address: Isidoro Orlanski, Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ 08540. Email: isidoro.orlanski@noaa.gov

Save
  • Ambrizzi, T., B. Hoskins, and H. H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52 , 36613672.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations. J. Climate, 17 , 46414673.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., R. A. Madden, J. M. Wallace, and D. S. Gutzer, 1979: Geographical variations in the vertical structure of geopotential height fluctuations. J. Atmos. Sci., 36 , 24502466.

    • Search Google Scholar
    • Export Citation
  • Bolin, B., 1950: On the influence of the earth’s orography on the general character of the westerlies. Tellus, 2 , 184195.

  • Charney, J. G., and A. Eliassen, 1949: A numerical method for predicting the perturbations of the middle-latitude westerlies. Tellus, 1 , 3854.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21 , 6975.

  • Deser, C., R. A. Tomas, and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20 , 47514767.

    • Search Google Scholar
    • Export Citation
  • Dole, R. M., 1983: Persistent anomalies of extratropical Northern Hemisphere wintertime circulation. Large-Scale Dynamical Processes in the Atmosphere, B. Hoskins and R. Pearce, Eds., Academic Press, 95–109.

    • Search Google Scholar
    • Export Citation
  • Egger, J., 1976: The linear response of a hemispheric two-level primitive equation model to forcing by topography. Mon. Wea. Rev., 104 , 351364.

    • Search Google Scholar
    • Export Citation
  • Gao, X. H., and J. L. Stanford, 1988: Possible feedback path for low-frequency atmospheric oscillations. J. Atmos. Sci., 45 , 14251432.

    • Search Google Scholar
    • Export Citation
  • Grose, W. L., and B. J. Hoskins, 1979: On the influence of orography on the large-scale atmospheric flow. J. Atmos. Sci., 36 , 223234.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Theory of stationary eddies. Large-Scale Dynamical Processes in the Atmosphere, B. Hoskins and R. Pearce, Eds., Academic Press, 127–168.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. Ting, 1990: Orographic versus thermal forcing of stationary waves: The importance of the mean low-level wind. J. Atmos. Sci., 47 , 495500.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75 , 18251830.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. Pierrehumbert, and R. L. Panetta, 1986: Dissipative destabilization of external Rossby waves. J. Atmos. Sci., 43 , 388396.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and D. L. Hartmann, 1982: Stationary waves on a sphere: Sensitivity to thermal feedback. J. Atmos. Sci., 39 , 19061920.

    • Search Google Scholar
    • Export Citation
  • Holopainen, E. O., L. Rontu, and N. C. Lau, 1982: The effect of large-scale transient eddies on the time-mean flow in the atmosphere. J. Atmos. Sci., 39 , 19721984.

    • Search Google Scholar
    • Export Citation
  • Honda, M., K. Yamazaki, H. Nakamura, and K. Takeuchi, 1999: Dynamic and thermodynamic characteristics of atmospheric response to anomalous sea-ice extent in the sea of Okhotsk. J. Climate, 12 , 33473358.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109 , 813829.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. N. James, and G. H. White, 1985: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40 , 15951612.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1966: The dynamical influence of orography on the large-scale motion of the atmosphere. J. Atmos. Sci., 23 , 259271.

  • Kasahara, A., T. Sasamori, and W. Washington, 1973: Simulation experiments with a 12-layer stratospheric global circulation model. I. Dynamical effect of the earth’s orography and thermal influence of continentality. J. Atmos. Sci., 30 , 12291251.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., 1998: Observations of Rossby waves linked to convection over the eastern tropical Pacific. J. Atmos. Sci., 55 , 321339.

    • Search Google Scholar
    • Export Citation
  • Kushner, Y., W. A. Robinson, I. Bladé, N. M. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15 , 22332256.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., 1979: The observed structure of tropospheric stationary waves and the local balances of vorticity and heat. J. Atmos. Sci., 36 , 9961016.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1974: Wave-CISK in the tropics. J. Atmos. Sci., 31 , 156179.

  • Manabe, S., and T. B. Terpstra, 1974: The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci., 31 , 342.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and G. H. White, 1985: Teleconnections in the Southern Hemisphere. Mon. Wea. Rev., 113 , 2237.

  • Mo, K. C., and M. Ghil, 1987: Statistics and dynamics of persistent anomalies. J. Atmos. Sci., 44 , 877901.

  • Mo, K. C., and R. W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126 , 15811596.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and J. N. Paegle, 2001: The Pacific–South American modes and their downstream effects. Int. J. Climatol., 21 , 12111229.

  • Namias, J., 1973: Response of the equatorial countercurrent to the subtropical atmosphere. Science, 181 , 12441245.

  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42 , 217229.

  • Randel, W. J., and J. L. Stanford, 1983: Structure of medium-scale atmospheric waves in the Southern Hemisphere summer. J. Atmos. Sci., 40 , 23122318.

    • Search Google Scholar
    • Export Citation
  • Silvestri, G. E., and C. S. Vera, 2003: Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geophys. Res. Lett., 30 , 2115. doi:10.1029/2003GL018277.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and T. H. Jacka, 1995: Relationship between the interannual variability of Antarctic sea ice and the Southern Oscillation. J. Climate, 8 , 637647.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1953: The dynamical influence of large-scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere. Quart. J. Roy. Meteor. Soc., 79 , 342366.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1980: Planetary waves at 500 mb in the Southern Hemisphere. Mon. Wea. Rev., 108 , 13781389.

  • Venegas, S. A., and M. R. Drinkwater, 2001: Sea ice, atmosphere and upper ocean variability in the Weddell Sea, Antarctica. J. Geophys. Res., 106 , 1674716765.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential heights field during the Northern Hemisphere winter. Mon. Wea. Rev., 109 , 784812.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and M. L. Blackmon, 1983: Observations of low-frequency atmospheric variability. Large-Scale Dynamical Processes in the Atmosphere, B. Hoskins and R. Pearce, Eds., Academic Press, 55–94.

    • Search Google Scholar
    • Export Citation
  • Watanabe, E., and H. Hasumi, 2005: Arctic sea ice response to wind stress variations. J. Geophys. Res., 110 , C11007. doi:10.1029/2004JC002678.

    • Search Google Scholar
    • Export Citation
  • White, W. B., and R. G. Peterson, 1996: An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature, 380 , 699702.

    • Search Google Scholar
    • Export Citation
  • Youngblut, C., and T. Sasamori, 1980: The nonlinear effects of transient and stationary eddies on the winter mean circulation. Part I: Diagnostic analysis. J. Atmos. Sci., 37 , 19441957.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., 2004: ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarct. Sci., 16 , 415425.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 179 75 10
PDF Downloads 133 53 9