Abstract
A method is introduced for directly measuring convective entrainment and detrainment in a cloud-resolving simulation. This technique is used to quantify the errors in the entrainment and detrainment estimates obtained using the standard bulk-plume method. The bulk-plume method diagnoses these rates from the convective flux of some conserved tracer, such as total water in nonprecipitating convection. By not accounting for the variability of this tracer in clouds and in the environment, it is argued that the bulk-plume equations systematically underestimate entrainment. Using tracers with different vertical profiles, it is also shown that the bulk-plume estimates are tracer dependent and, in some cases, unphysical. The new direct-measurement technique diagnoses entrainment and detrainment at the gridcell level without any recourse to conserved tracers. Using this method in large-eddy simulations of shallow and deep convection, it is found that the bulk-plume method underestimates entrainment by roughly a factor of 2. The directly measured entrainment rates are then compared to cloud height and cloud buoyancy. Contrary to existing theories, fractional entrainment is not found to scale like the inverse of height, the cloud buoyancy, or the gradient of cloud buoyancy. On the other hand, fractional detrainment is found to scale linearly with cloud buoyancy. Finally, direct measurement is used to diagnose the spatial distribution of entrainment and detrainment during the evolution of an individual deep cumulonimbus.
Corresponding author address: David M. Romps, Harvard University, 416 Geological Museum, 24 Oxford St., Cambridge, MA 02138. Email: davidromps@gmail.com