Equatorial Mountain Torques and Cold Surge Preconditioning

Sylvain Mailler Laboratoire de Météorologie Dynamique du CNRS, Paris, and École Nationale des Ponts et Chaussées, Marne la Vallée, France

Search for other papers by Sylvain Mailler in
Current site
Google Scholar
PubMed
Close
and
François Lott Laboratoire de Météorologie Dynamique du CNRS, Paris, France

Search for other papers by François Lott in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The evolution of the two components of the equatorial mountain torque (EMT) applied by mountains on the atmosphere is analyzed in the NCEP reanalysis. A strong lagged relationship between the EMT component along the Greenwich axis TM1 and the EMT component along the 90°E axis TM2 is found, with a pronounced signal on TM1 followed by a signal of opposite sign on TM2. It is shown that this result holds for the major massifs (Antarctica, the Tibetan Plateau, the Rockies, and the Andes) if a suitable axis system is used for each of them. For the midlatitude mountains, this relationship is in part associated with the development of cold surges.

Following these results, two hypotheses are made: (i) the mountain forcing on the atmosphere is well measured by the regional EMTs and (ii) this forcing partly drives the cold surges. To support these, a purely dynamical linear model is proposed: it is written on the sphere, uses an f-plane quasigeostrophic approximation, and includes the mountain forcings. In this model, a positive (negative) peak in TM1 produced by a mountain massif in the Northern (Southern) Hemisphere is due to a large-scale high surface pressure anomaly poleward of the massif. At a later stage, high pressure and low temperature anomalies develop in the lower troposphere east of the mountain, explaining the signal on TM2 and providing the favorable conditions for the cold surge development.

It is concluded that the EMT is a good measure of the dynamical forcing of the atmospheric flow by the mountains and that the poleward forces exerted by mountains on the atmosphere are substantial drivers of the cold surges, at least in their early stage. Therefore, the EMT time series can be an important diagnostic to assess the representation of mountains in general circulation models.

Corresponding author address: François Lott, Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris CEDEX 05, France. Email: flott@lmd.ens.fr

Abstract

The evolution of the two components of the equatorial mountain torque (EMT) applied by mountains on the atmosphere is analyzed in the NCEP reanalysis. A strong lagged relationship between the EMT component along the Greenwich axis TM1 and the EMT component along the 90°E axis TM2 is found, with a pronounced signal on TM1 followed by a signal of opposite sign on TM2. It is shown that this result holds for the major massifs (Antarctica, the Tibetan Plateau, the Rockies, and the Andes) if a suitable axis system is used for each of them. For the midlatitude mountains, this relationship is in part associated with the development of cold surges.

Following these results, two hypotheses are made: (i) the mountain forcing on the atmosphere is well measured by the regional EMTs and (ii) this forcing partly drives the cold surges. To support these, a purely dynamical linear model is proposed: it is written on the sphere, uses an f-plane quasigeostrophic approximation, and includes the mountain forcings. In this model, a positive (negative) peak in TM1 produced by a mountain massif in the Northern (Southern) Hemisphere is due to a large-scale high surface pressure anomaly poleward of the massif. At a later stage, high pressure and low temperature anomalies develop in the lower troposphere east of the mountain, explaining the signal on TM2 and providing the favorable conditions for the cold surge development.

It is concluded that the EMT is a good measure of the dynamical forcing of the atmospheric flow by the mountains and that the poleward forces exerted by mountains on the atmosphere are substantial drivers of the cold surges, at least in their early stage. Therefore, the EMT time series can be an important diagnostic to assess the representation of mountains in general circulation models.

Corresponding author address: François Lott, Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris CEDEX 05, France. Email: flott@lmd.ens.fr

Save
  • Bessemoulin, P., P. Bougeault, A. Genoves, A. J. Clar, and D. Puech, 1993: Mountain pressure drag during PYREX. Beitr. Phys. Atmos., 66 , 305325.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92 , 325334.

  • Brown, A. R., 2004: Resolution dependence of orographic torques. Quart. J. Roy. Meteor. Soc., 130 , 30293046.

  • Buzzi, A., and S. Tibaldi, 1978: Cyclogenesis in the lee of the Alps: A case study. Quart. J. Roy. Meteor. Soc., 104 , 271287.

  • Chang, C-P., and K. M. Lau, 1980: Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during December 1974. Part II: Planetary-scale aspects. Mon. Wea. Rev., 108 , 298312.

    • Search Google Scholar
    • Export Citation
  • Chang, C-P., J. E. Erickson, and K. M. Lau, 1979: Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during December 1974. Part I: Synoptic aspects. Mon. Wea. Rev., 107 , 812829.

    • Search Google Scholar
    • Export Citation
  • Chen, T-C., W-R. Huang, and J-H. Yoon, 2004: Interannual variation of the East Asian cold surge activity. J. Climate, 17 , 401413.

  • Clark, J. H. E., 1990: An observational and theoretical study of Colorado lee cyclogenesis. J. Atmos. Sci., 47 , 15411561.

  • Colle, B. A., and C. Mass, 1995: The structure evolution of cold surges east of the Rocky Mountains. Mon. Wea. Rev., 123 , 25772610.

  • Compo, G. P., G. N. Kiladis, and P. J. Webster, 1999: The horizontal and vertical structure of East Asian winter monsoon pressure surges. Quart. J. Roy. Meteor. Soc., 125 , 2954.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., and P. D. Phillips, 1985: Mountain drag along the Gotthard section during ALPEX. J. Atmos. Sci., 42 , 20932109.

  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 , 3352.

  • Egger, J., 1988: Alpine lee cyclogenesis: Verification of theories. J. Atmos. Sci., 45 , 21872203.

  • Egger, J., and K-P. Hoinka, 2000: Mountain torques and the equatorial components of global angular momentum. J. Atmos. Sci., 57 , 23192331.

    • Search Google Scholar
    • Export Citation
  • Egger, J., and K-P. Hoinka, 2002: Equatorial components of global atmospheric angular momentum: Covariance functions. Quart. J. Roy. Meteor. Soc., 128 , 11371157.

    • Search Google Scholar
    • Export Citation
  • Egger, J., and K-P. Hoinka, 2008: Mountain torque events at the Tibetan Plateau. Mon. Wea. Rev., 136 , 389404.

  • Egger, J., K. Weickmann, and K-P. Hoinka, 2007: Angular momentum in the global atmospheric circulation. Rev. Geophys., 45 , RG4007. doi:10.1029/2006RG000213.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2006: Dynamical processes of equatorial atmospheric angular momentum. J. Atmos. Sci., 63 , 565581.

  • Garreaud, R. D., 2000: Cold air incursions over subtropical South America: Mean structure and dynamics. Mon. Wea. Rev., 128 , 25442559.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 2001: Subtropical cold surges: Regional aspects and global distribution. Int. J. Climatol., 21 , 11811197.

  • Hsu, H-H., 1987: Propagation of low-level circulation features in the vicinity of mountain ranges. Mon. Wea. Rev., 115 , 18641893.

  • Hsu, H-H., and J. M. Wallace, 1985: Vertical structure of wintertime teleconnection patterns. J. Atmos. Sci., 42 , 16931710.

  • Iskenderian, H., and D. A. Salstein, 1998: Regional sources of mountain torque variability and high-frequency fluctuations in atmospheric angular momentum. Mon. Wea. Rev., 126 , 16811694.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kitoh, A., 2004: Effects of mountain uplift on East Asian summer climate investigated by a coupled atmosphere–ocean GCM. J. Climate, 17 , 783802.

    • Search Google Scholar
    • Export Citation
  • Lott, F., 1999: Alleviation of stationary biases through a mountain drag parameterization scheme and a simple representation of mountain lift forces. Mon. Wea. Rev., 127 , 788801.

    • Search Google Scholar
    • Export Citation
  • Lott, F., and F. d’Andrea, 2005: Mass and wind axial angular momentum responses to mountain torques in the 1–25-day band. Links with the Arctic Oscillation. Quart. J. Roy. Meteor. Soc., 131 , 14831500. doi:10.1256/qj.03.168.

    • Search Google Scholar
    • Export Citation
  • Lott, F., A. W. Robertson, and M. Ghil, 2004: Mountain torques and Northern Hemisphere low-frequency variability. Part I: Hemispheric aspects. J. Atmos. Sci., 61 , 12591271.

    • Search Google Scholar
    • Export Citation
  • Lott, F., L. Goudard, and A. Martin, 2005: Links between the mountain torque and the Arctic Oscillation in the Laboratoire de Météorologie dynamique (LMDz) general circulation model. J. Geophys. Res., 110 , D22107. doi:10.1029/2005JD006073.

    • Search Google Scholar
    • Export Citation
  • Mailler, S., and F. Lott, 2009: Dynamical influence of the Tibetan Plateau on the winter monsoon over southeastern Asia. Geophys. Res. Lett., 36 , L06708. doi:10.1029/2008GL036952.

    • Search Google Scholar
    • Export Citation
  • Marengo, J., A. Cornejo, P. Satyamurty, and C. Nobre, 1997: Cold surges in tropical and extratropical South America: The strong event in June 1994. Mon. Wea. Rev., 125 , 27592786.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1985: A theoretical model of orographically modified cyclogenesis. J. Atmos. Sci., 42 , 12441258.

  • Reason, C. J. C., 1994: Orographically trapped disturbances in the lower atmosphere: Scale analysis and simple models. Meteor. Atmos. Phys., 53 , 131136.

    • Search Google Scholar
    • Export Citation
  • Rosen, R. D., and D. A. Salstein, 1983: Variations in atmospheric angular momentum on global and regional scales and the length of day. J. Geophys. Res., 88 , 54515470.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., W. E. Bracken, L. F. Bosart, G. J. Hakim, M. A. Bedrick, M. J. Dickinson, and K. R. Tyle, 1997: The 1993 superstorm cold surge: Frontal structure, gap flow, and tropical impact. Mon. Wea. Rev., 125 , 539.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., and J. T. Nery, 1992: Condiciones meteorológicas asociadas a la ocurrencia de heladas en la región de Maringá. Rev. Bras. Meteor., 7 , 523534.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1998: Extratropical forcing of tropical convection in a northern winter simulation with the UGAMP GCM. Quart. J. Roy. Meteor. Soc., 124 , 2751.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: Some aspects of the quasi-geostrophic flow over mountains. J. Atmos. Sci., 36 , 23852392.

  • Smith, R. B., 1984: A theory of lee cyclogenesis. J. Atmos. Sci., 41 , 11591168.

  • Smith, R. B., 1986: Further development of a theory of lee cyclogenesis. J. Atmos. Sci., 43 , 15821602.

  • Speranza, A., A. Buzzi, A. Trevisan, and P. Malguzzi, 1985: A theory of deep cyclogenesis in the lee of the Alps. Part I: Modifications of baroclinic instability by localized topography. J. Atmos. Sci., 42 , 15211535.

    • Search Google Scholar
    • Export Citation
  • Sumi, A., 1983: A study on cold surges around the Tibetan Plateau by using numerical models. J. Meteor. Soc. Japan, 63 , 377396.

  • Tangang, F. T., L. Juneng, E. Salimun, P. N. Vinayachandran, Y. K. Seng, C. J. C. Reason, S. K. Behera, and T. Yasunari, 2008: On the roles of the northeast cold surge, the Borneo vortex, the Madden-Julian Oscillation, and the Indian Ocean Dipole during the extreme 2006/2007 flood in southern peninsular Malaysia. Geophys. Res. Lett., 35 , L14S07. doi:10.1029/2008GL033429.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., S. Tibaldi, and A. J. Simmons, 1983: Reduction of systematic forecast errors in the ECMWF model through the introduction of an envelope orography. Quart. J. Roy. Meteor. Soc., 109 , 683717.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., and P. D. Sardeshmukh, 1994: The atmospheric angular momentum cycle associated with the Madden–Julian oscillation. J. Atmos. Sci., 51 , 31943208.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997: Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979–95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125 , 26052619.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 117 49 3
PDF Downloads 67 22 2