Sensitivity of Tropical Cyclone Inner-Core Size and Intensity to the Radial Distribution of Surface Entropy Flux

Jing Xu International Pacific Research Center, and Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Jing Xu in
Current site
Google Scholar
PubMed
Close
and
Yuqing Wang International Pacific Research Center, and Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Yuqing Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The surface energy (entropy) flux is critical to the development and maintenance of a tropical cyclone (TC). However, it is unclear how sensitive the inner-core size and intensity of a TC could be to the radial distribution of the surface entropy flux under the TC. Such a potential sensitivity is examined in this study using the multiply nested, fully compressible, nonhydrostatic TC model TCM4. By artificially eliminating the surface entropy fluxes in different radial extent in different experiments, the effect of the surface entropy flux in the different radial ranges on the inner-core size and intensity of a simulated TC is evaluated. Consistent with recent findings from axisymmetric models, the entropy flux in the eye region of a TC is found to contribute little to the storm intensity, but it plays a role in reducing the radius of maximum wind (RMW). Although surface entropy fluxes under the eyewall contribute greatly to the storm intensity, those outside the eyewall up to a radius of about 2–2.5 times the RMW are also important. Farther outward, the surface entropy fluxes are found to be crucial to the growth of the storm inner-core size but could reduce the storm intensity. The surface entropy flux outside the inner core plays a critical role in maintaining high convective available potential energy (CAPE) outside the eyewall and thus active spiral rainbands. The latent heat release in these rainbands is responsible for the increase in the inner-core size of the simulated TC. A positive feedback is identified to explain changes in the inner-core size of the simulated storms in different experiments. Implications of the results for both observations and numerical prediction of TC structure and intensity changes are briefly discussed.

Corresponding author address: Dr. Yuqing Wang, IPRC/SOEST, University of Hawaii at Manoa, 1680 East-West Road, Honolulu, HI 96822. Email: yuqing@hawaii.edu

Abstract

The surface energy (entropy) flux is critical to the development and maintenance of a tropical cyclone (TC). However, it is unclear how sensitive the inner-core size and intensity of a TC could be to the radial distribution of the surface entropy flux under the TC. Such a potential sensitivity is examined in this study using the multiply nested, fully compressible, nonhydrostatic TC model TCM4. By artificially eliminating the surface entropy fluxes in different radial extent in different experiments, the effect of the surface entropy flux in the different radial ranges on the inner-core size and intensity of a simulated TC is evaluated. Consistent with recent findings from axisymmetric models, the entropy flux in the eye region of a TC is found to contribute little to the storm intensity, but it plays a role in reducing the radius of maximum wind (RMW). Although surface entropy fluxes under the eyewall contribute greatly to the storm intensity, those outside the eyewall up to a radius of about 2–2.5 times the RMW are also important. Farther outward, the surface entropy fluxes are found to be crucial to the growth of the storm inner-core size but could reduce the storm intensity. The surface entropy flux outside the inner core plays a critical role in maintaining high convective available potential energy (CAPE) outside the eyewall and thus active spiral rainbands. The latent heat release in these rainbands is responsible for the increase in the inner-core size of the simulated TC. A positive feedback is identified to explain changes in the inner-core size of the simulated storms in different experiments. Implications of the results for both observations and numerical prediction of TC structure and intensity changes are briefly discussed.

Corresponding author address: Dr. Yuqing Wang, IPRC/SOEST, University of Hawaii at Manoa, 1680 East-West Road, Honolulu, HI 96822. Email: yuqing@hawaii.edu

Save
  • Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of Category 5 Hurricane Isabel from 12 to 14 September. Mon. Wea. Rev., 136 , 20232046.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and G. J. Holland, 1995: The boundary layer of Tropical Cyclone Kerry (1979). Mon. Wea. Rev., 123 , 20072028.

  • Brand, S., 1972: Very large and very small typhoons of the western North Pacific Ocean. J. Meteor. Soc. Japan, 50 , 332341.

  • Bryan, G. H., and R. Rotunno, 2009: The influence of near-surface, high-entropy air in hurricane eyes on maximum hurricane intensity. J. Atmos. Sci., 66 , 148158.

    • Search Google Scholar
    • Export Citation
  • Cocks, S. B., and W. M. Gray, 2002: Variability of the outer wind profiles of western North Pacific typhoons: Classifications and techniques for analysis and forecasting. Mon. Wea. Rev., 130 , 19892005.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64 , 18351856.

    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., M. DeMaria, and J. A. Knaff, 2006: Improvement of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45 , 15731581.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory of tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585604.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52 , 39693976.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54 , 10141026.

  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., E. Ruprecht, and R. Phelps, 1975: Relative humidity in tropical weather systems. Mon. Wea. Rev., 103 , 685690.

  • Harr, P. A., M. R. Kalafsky, and R. Elsberry, 1996: Environmental conditions prior to formation of a midget tropical cyclone during TCM-93. Mon. Wea. Rev., 124 , 16931710.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137 , 32943315.

  • Holland, G. J., and R. T. Merrill, 1984: On the dynamics of tropical cyclone structure changes. Quart. J. Roy. Meteor. Soc., 110 , 723745.

    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones: Part I: Size parameters. J. Climate, 17 , 35553575.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., J. P. Kossin, and M. DeMaria, 2003: Annular hurricanes. Wea. Forecasting, 18 , 204223.

  • Knaff, J. A., C. R. Sampson, M. DeMaria, T. P. Marchok, J. M. Gross, and C. J. McAdie, 2007: Statistical tropical cyclone wind radii prediction using climatology and persistence. Wea. Forecasting, 22 , 781791.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., J. A. Knaff, H. I. Berger, D. C. Hendon, T. A. Cram, C. S. Velden, R. J. Murnane, and J. D. Hawkins, 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22 , 89101.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and C-S. Liou, 1996: Implementation of an E–ε parameterization of vertical subgrid-scale mixing in a regional model. Mon. Wea. Rev., 124 , 905918.

    • Search Google Scholar
    • Export Citation
  • Maclay, K. S., M. DeMaria, and T. H. Vonder Haar, 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 136 , 48824898.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricane. Tellus, 12 , 120.

  • May, P. T., and G. J. Holland, 1999: The role of potential vorticity generation in tropical cyclone rainbands. J. Atmos. Sci., 56 , 12241228.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112 , 14081418.

  • Montgomery, M. T., M. M. Bell, S. D. Aberson, and M. L. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storm. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87 , 13351347.

    • Search Google Scholar
    • Export Citation
  • Moyer, A. C., J. L. Evans, and M. Powell, 2007: Comparison of observed gale radius statistics. Meteor. Atmos. Phys., 97 , 4155.

  • Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26 , 340.

  • Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclones. J. Meteor. Soc. Japan, 60 , 369380.

  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60 , 23492371.

  • Persing, J., and M. T. Montgomery, 2005: Is environmental CAPE important in the determination of maximum possible hurricane intensity? J. Atmos. Sci., 62 , 542550.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. H. Schubert, B. D. McNoldy, and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63 , 325340.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56 , 11971223.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and N. Van Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135 , 13211335.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129 , 13701394.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity and kinetic energy budgets. J. Atmos. Sci., 59 , 12131238.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59 , 12391262.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002c: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130 , 30223036.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2007: A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical cyclone model—TCM4: Model description and development of asymmetries without explicit asymmetric forcing. Meteor. Atmos. Phys., 97 , 93116.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008a: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65 , 11581181.

  • Wang, Y., 2008b: Structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic model—TCM4. J. Atmos. Sci., 65 , 15051527.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66 , 12501273.

  • Wang, Y., and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67 , 97116.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., and W. M. Gray, 1988a: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Wea. Rev., 116 , 10321043.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., and W. M. Gray, 1988b: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116 , 10441056.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39 , 395411.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., F. D. Marks, and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41 , 31893211.

    • Search Google Scholar
    • Export Citation
  • Yang, B., Y. Wang, and B. Wang, 2007: The effect of internally generated inner-core asymmetries on tropical cyclone potential intensity. J. Atmos. Sci., 64 , 11651188.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1133 379 37
PDF Downloads 758 203 17