Lagrangian Coherent Structures near a Subtropical Jet Stream

Wenbo Tang School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona

Search for other papers by Wenbo Tang in
Current site
Google Scholar
PubMed
Close
,
Manikandan Mathur Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Manikandan Mathur in
Current site
Google Scholar
PubMed
Close
,
George Haller Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by George Haller in
Current site
Google Scholar
PubMed
Close
,
Douglas C. Hahn Air Force Research Laboratory, Hanscom Air Force Base, Massachusetts

Search for other papers by Douglas C. Hahn in
Current site
Google Scholar
PubMed
Close
, and
Frank H. Ruggiero Air Force Research Laboratory, Hanscom Air Force Base, Massachusetts

Search for other papers by Frank H. Ruggiero in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Direct Lyapunov exponents and stability results are used to extract and distinguish Lagrangian coherent structures (LCS) from a three-dimensional atmospheric dataset generated from the Weather Research and Forecasting (WRF) model. The numerical model is centered at 19.78°N, 155.55°W, initialized from the Global Forecast System for the case of a subtropical jet stream near Hawaii on 12 December 2002. The LCS are identified that appear to create optical and mechanical turbulence, as evidenced by balloon data collected during a measurement campaign near Hawaii.

* Current affiliation: Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada

+ Current affiliation: Air Force Weather Weapon System, Hanscom Air Force Base, Massachusetts

Corresponding author address: George Haller, Department of Mechanical Engineering, McGill University, Montreal QC H3A 2 K6, Canada. Email: george.haller@mcgill.ca

Abstract

Direct Lyapunov exponents and stability results are used to extract and distinguish Lagrangian coherent structures (LCS) from a three-dimensional atmospheric dataset generated from the Weather Research and Forecasting (WRF) model. The numerical model is centered at 19.78°N, 155.55°W, initialized from the Global Forecast System for the case of a subtropical jet stream near Hawaii on 12 December 2002. The LCS are identified that appear to create optical and mechanical turbulence, as evidenced by balloon data collected during a measurement campaign near Hawaii.

* Current affiliation: Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada

+ Current affiliation: Air Force Weather Weapon System, Hanscom Air Force Base, Massachusetts

Corresponding author address: George Haller, Department of Mechanical Engineering, McGill University, Montreal QC H3A 2 K6, Canada. Email: george.haller@mcgill.ca

Save
  • Andreassen, O., P. O. Hvidsten, D. C. Fritts, and S. Arendt, 1998: Vorticity dynamics in a breaking internal gravity wave. Part 1. Initial instability evolution. J. Fluid Mech., 367 , 2746.

    • Search Google Scholar
    • Export Citation
  • Chong, M. S., A. E. Perry, and B. J. Cantwell, 1990: A general classification of three-dimensional flow field. Phys. Fluids, 2A , 765777.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., W. D. Hall, R. M. Kerr, D. Middleton, L. Radke, F. M. Ralph, P. J. Neiman, and D. Levinson, 2000: Origins of aircraft-damaging clear-air turbulence during the 9 December 1992 Colorado downslope windstorm: Numerical simulations and comparison with observations. J. Atmos. Sci., 57 , 11051131.

    • Search Google Scholar
    • Export Citation
  • Endlich, R. M., 1964: The mesoscale structures of some regions of clear-air turbulence. J. Appl. Meteor., 3 , 261276.

  • Fritts, D. C., T. L. Palmer, O. Andreassen, and I. Lie, 1996: Evolution and breakdown of Kelvin–Helmholtz billows in stratified compressible flows. Part I: Comparison of two- and three-dimensional flows. J. Atmos. Sci., 53 , 31733191.

    • Search Google Scholar
    • Export Citation
  • Gushchin, V. A., and R. V. Matyushin, 2006: Vortex formation mechanisms in the wake behind a sphere for 200 < Re < 380. Fluid Dyn., 41 , 795809.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2001: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D, 149 , 248277.

  • Haller, G., 2002: Lagrangian coherent structures from approximate velocity data. Phys. Fluids, 14 , 18511861.

  • Haller, G., 2005: An objective definition of a vortex. J. Fluid Mech., 525 , 126.

  • Hunt, J. C. R., and W. H. Snyder, 1980: Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J. Fluid Mech., 96 , 671704.

    • Search Google Scholar
    • Export Citation
  • Jeong, J., and F. Hussain, 1995: On the identification of a vortex. J. Fluid Mech., 285 , 6994.

  • Joseph, B., A. Mahalov, B. Nicolaenko, and K. Tse, 2004: Variability of turbulence and its outer scales in a model tropopause jet. J. Atmos. Sci., 61 , 621643.

    • Search Google Scholar
    • Export Citation
  • Jumper, G. Y., and R. R. Beland, 2000: Progress in the understanding and modeling of atmospheric optical turbulence. Proc. 31st AIAA Plasma Dynamics and Laser Conf., Denver, CO, AIAA, 1–9.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and Coauthors, 2005: Turbulence and gravity waves within an upper-level front. J. Atmos. Sci., 62 , 38853908.

  • Lane, T. P., J. D. Doyle, R. Plougonven, M. A. Shapiro, and R. D. Sharman, 2004: Observations and numerical simulations of inertia–gravity waves and shearing instabilities in the vicinity of a jet stream. J. Atmos. Sci., 61 , 26922706.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, R. G. Frehlich, and J. M. Brown, 2006: Numerical simulations of the wake of Kauai. J. Appl. Meteor. Climatol., 45 , 13131331.

    • Search Google Scholar
    • Export Citation
  • Lekien, F., S. C. Shadden, and J. E. Marsden, 2007: Lagrangian coherent structures in n-dimensional systems. J. Math. Phys., 48 , 065404. doi:10.1063/1.2740025.

    • Search Google Scholar
    • Export Citation
  • Lu, C., and S. E. Koch, 2008: Interaction of upper-tropospheric turbulence and gravity waves as obtained from spectral and structure function analyses. J. Atmos. Sci., 65 , 26762690.

    • Search Google Scholar
    • Export Citation
  • Mahalov, A., M. Moustaoui, and B. Nicholaenko, 2006: Characterization of stratospheric Clear Air Turbulence (CAT) for Air Force platforms. Proc. HPCMP Users Group Conf., Denver, CO, IEEE, 288–295.

    • Search Google Scholar
    • Export Citation
  • Mahalov, A., M. Moustaoui, and B. Nicholaenko, 2008: Three-dimensional instabilities in non-parallel shear stratified flows. Kinet. Relat. Models, 2 , 215229.

    • Search Google Scholar
    • Export Citation
  • Mathur, M., G. Haller, T. Peacock, J. E. Ruppert-Felsot, and H. L. Swinney, 2007: Uncovering the Lagrangian skeleton of turbulence. Phys. Rev. Lett., 98 , 144502. doi:10.1103/PhysRevLett.98.144502.

    • Search Google Scholar
    • Export Citation
  • McHugh, J. P., I. Dors, G. Y. Jumper, J. R. Roadcap, E. A. Murphy, and D. C. Hahn, 2008: Large variations in balloon ascent rate over Hawaii. J. Geophys. Res., 113 , D15123. doi:10.1029/2007JD009458.

    • Search Google Scholar
    • Export Citation
  • Miles, J., 1986: Richardson’s criterion for the stability of stratified shear flow. Phys. Fluids, 29 , 34703471.

  • Okubo, A., 1970: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res., 17 , 445454.

    • Search Google Scholar
    • Export Citation
  • Porter, J. N., D. Stevens, K. Roe, S. Kono, D. Kress, and E. Lau, 2007: Wind environment in the lee of Kauai Island, Hawaii, during trade wind conditions: Weather setting for the Helios Mishap. Bound.-Layer Meteor., 123 , 463480.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and P. K. Smolarkiewicz, 1991: Further results on lee vortices in low-Froude-number flow. J. Atmos. Sci., 48 , 22042211.

  • Shadden, S. C., F. Lekien, and J. E. Marsden, 2005: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D, 212 , 271304.

    • Search Google Scholar
    • Export Citation
  • Shadden, S. C., J. O. Dabiri, and J. E. Marsden, 2006: Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys. Fluids, 18 , 047105. doi:10.1063/1.2189885.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46 , 11541164.

    • Search Google Scholar
    • Export Citation
  • Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48 , 273294.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 378 111 18
PDF Downloads 240 79 15