• Houze Jr., R. A., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60 , 396410.

  • Houze Jr., R. A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115 , 425461.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., , and A. K. Betts, 1981: Convection in GATE. Rev. Geophys. Space Phys., 19 , 541576.

  • Johnson, R. H., , and G. S. Young, 1983: Heat and moisture budgets of tropical mesoscale anvil clouds. J. Atmos. Sci., 40 , 21382147.

  • Kaiser, H. F., 1958: The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23 , 187200.

  • Lau, K-M., and Coauthors, 2000: A report of the field operations and early results of the South China Sea Monsoon Experiment (SCSMEX). Bull. Amer. Meteor. Soc., 81 , 12611270.

    • Search Google Scholar
    • Export Citation
  • Lin, C., , and A. Arakawa, 2000: Empirical determination of the basic modes of cumulus heating and drying profiles. J. Atmos. Sci., 57 , 35713591.

    • Search Google Scholar
    • Export Citation
  • May, P. T., , J. H. Mather, , G. Vaughan, , C. Jakob, , G. M. McFarquhar, , K. N. Bower, , and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89 , 629645.

    • Search Google Scholar
    • Export Citation
  • Mestas-Nuñez, A. M., 2000: Orthogonality properties of rotated empirical modes. Int. J. Climatol., 20 , 15091516.

  • Schumacher, C., , M. H. Zhang, , and P. E. Ciesielski, 2007: Heating structures of the TRMM field campaigns. J. Atmos. Sci., 64 , 25932610.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , Y. N. Takayabu, , W-K. Tao, , and D. E. Johnson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43 , 10951113.

    • Search Google Scholar
    • Export Citation
  • Silva Dias, M. A. F., and Coauthors, 2002: Cloud and rain processes in a biosphere–atmosphere interaction context in the Amazon region. J. Geophys. Res., 107 , 8072. doi:10.1029/2001JD000335.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and Coauthors, 2006: Retrieval of latent heating from TRMM measurements. Bull. Amer. Meteor. Soc., 87 , 15551572.

  • Tung, W-W., , C. Lin, , B. Chen, , M. Yanai, , and A. Arakawa, 1999: Basic modes of cumulus heating and drying observed during TOGA-COARE IOP. Geophys. Res. Lett., 26 , 31173120.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73 , 13771416.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Elsevier, 629 pp.

  • Yanai, M., , S. Esbensen, , and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., and Coauthors, 2008: MISMO field experiment in the equatorial Indian Ocean. Bull. Amer. Meteor. Soc., 89 , 18891903.

  • Yuter, S. E., , A. Houze Jr., , E. A. Smith, , T. T. Wilheit, , and E. Zipser, 2005: Physical characterization of tropical oceanic convection observed in KWAJEX. J. Appl. Meteor., 44 , 385415.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , and S. M. Hagos, 2009: Bimodal structure and variability of large-scale diabatic heating in the tropics. J. Atmos. Sci., 66 , 36213640.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 1
PDF Downloads 9 9 2

Building Blocks of Tropical Diabatic Heating

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
© Get Permissions
Restricted access

Abstract

Rotated EOF analyses are used to study the composition and variability of large-scale tropical diabatic heating profiles estimated from eight field campaigns. The results show that the profiles are composed of a pair of building blocks. These are the stratiform heating with peak heating near 400 hPa and a cooling peak near 700 hPa and the convective heating with a heating maximum near 700 hPa. Variations in the contributions of these building blocks account for the evolution of the large-scale heating profile. Instantaneous top-heavy (bottom-heavy) large-scale heating profiles associated with excess of stratiform (convective) heating evolve toward a stationary mean profile due to exponential decay of the excess stratiform (convective) heating.

* Current affiliation: Pacific Northwest National Laboratory, Richland, Washington

Corresponding author address: Samson Hagos, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K9-24, Richland, WA 99354. Email: samson.hagos@pnl.gov

Abstract

Rotated EOF analyses are used to study the composition and variability of large-scale tropical diabatic heating profiles estimated from eight field campaigns. The results show that the profiles are composed of a pair of building blocks. These are the stratiform heating with peak heating near 400 hPa and a cooling peak near 700 hPa and the convective heating with a heating maximum near 700 hPa. Variations in the contributions of these building blocks account for the evolution of the large-scale heating profile. Instantaneous top-heavy (bottom-heavy) large-scale heating profiles associated with excess of stratiform (convective) heating evolve toward a stationary mean profile due to exponential decay of the excess stratiform (convective) heating.

* Current affiliation: Pacific Northwest National Laboratory, Richland, Washington

Corresponding author address: Samson Hagos, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K9-24, Richland, WA 99354. Email: samson.hagos@pnl.gov

Save