Building Blocks of Tropical Diabatic Heating

Samson Hagos Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Samson Hagos in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Rotated EOF analyses are used to study the composition and variability of large-scale tropical diabatic heating profiles estimated from eight field campaigns. The results show that the profiles are composed of a pair of building blocks. These are the stratiform heating with peak heating near 400 hPa and a cooling peak near 700 hPa and the convective heating with a heating maximum near 700 hPa. Variations in the contributions of these building blocks account for the evolution of the large-scale heating profile. Instantaneous top-heavy (bottom-heavy) large-scale heating profiles associated with excess of stratiform (convective) heating evolve toward a stationary mean profile due to exponential decay of the excess stratiform (convective) heating.

* Current affiliation: Pacific Northwest National Laboratory, Richland, Washington

Corresponding author address: Samson Hagos, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K9-24, Richland, WA 99354. Email: samson.hagos@pnl.gov

Abstract

Rotated EOF analyses are used to study the composition and variability of large-scale tropical diabatic heating profiles estimated from eight field campaigns. The results show that the profiles are composed of a pair of building blocks. These are the stratiform heating with peak heating near 400 hPa and a cooling peak near 700 hPa and the convective heating with a heating maximum near 700 hPa. Variations in the contributions of these building blocks account for the evolution of the large-scale heating profile. Instantaneous top-heavy (bottom-heavy) large-scale heating profiles associated with excess of stratiform (convective) heating evolve toward a stationary mean profile due to exponential decay of the excess stratiform (convective) heating.

* Current affiliation: Pacific Northwest National Laboratory, Richland, Washington

Corresponding author address: Samson Hagos, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K9-24, Richland, WA 99354. Email: samson.hagos@pnl.gov

Save
  • Houze Jr., R. A., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60 , 396410.

  • Houze Jr., R. A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115 , 425461.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., and A. K. Betts, 1981: Convection in GATE. Rev. Geophys. Space Phys., 19 , 541576.

  • Johnson, R. H., and G. S. Young, 1983: Heat and moisture budgets of tropical mesoscale anvil clouds. J. Atmos. Sci., 40 , 21382147.

  • Kaiser, H. F., 1958: The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23 , 187200.

  • Lau, K-M., and Coauthors, 2000: A report of the field operations and early results of the South China Sea Monsoon Experiment (SCSMEX). Bull. Amer. Meteor. Soc., 81 , 12611270.

    • Search Google Scholar
    • Export Citation
  • Lin, C., and A. Arakawa, 2000: Empirical determination of the basic modes of cumulus heating and drying profiles. J. Atmos. Sci., 57 , 35713591.

    • Search Google Scholar
    • Export Citation
  • May, P. T., J. H. Mather, G. Vaughan, C. Jakob, G. M. McFarquhar, K. N. Bower, and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89 , 629645.

    • Search Google Scholar
    • Export Citation
  • Mestas-Nuñez, A. M., 2000: Orthogonality properties of rotated empirical modes. Int. J. Climatol., 20 , 15091516.

  • Schumacher, C., M. H. Zhang, and P. E. Ciesielski, 2007: Heating structures of the TRMM field campaigns. J. Atmos. Sci., 64 , 25932610.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W-K. Tao, and D. E. Johnson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43 , 10951113.

    • Search Google Scholar
    • Export Citation
  • Silva Dias, M. A. F., and Coauthors, 2002: Cloud and rain processes in a biosphere–atmosphere interaction context in the Amazon region. J. Geophys. Res., 107 , 8072. doi:10.1029/2001JD000335.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and Coauthors, 2006: Retrieval of latent heating from TRMM measurements. Bull. Amer. Meteor. Soc., 87 , 15551572.

  • Tung, W-W., C. Lin, B. Chen, M. Yanai, and A. Arakawa, 1999: Basic modes of cumulus heating and drying observed during TOGA-COARE IOP. Geophys. Res. Lett., 26 , 31173120.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73 , 13771416.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Elsevier, 629 pp.

  • Yanai, M., S. Esbensen, and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., and Coauthors, 2008: MISMO field experiment in the equatorial Indian Ocean. Bull. Amer. Meteor. Soc., 89 , 18891903.

  • Yuter, S. E., A. Houze Jr., E. A. Smith, T. T. Wilheit, and E. Zipser, 2005: Physical characterization of tropical oceanic convection observed in KWAJEX. J. Appl. Meteor., 44 , 385415.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and S. M. Hagos, 2009: Bimodal structure and variability of large-scale diabatic heating in the tropics. J. Atmos. Sci., 66 , 36213640.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 157 59 2
PDF Downloads 76 33 0