Dissipative Energization of Baroclinic Waves by Surface Ekman Pumping

Sukyoung Lee Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Sukyoung Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A two-layer quasigeostrophic model is used to study the effect of lower boundary Ekman pumping on the energetics of baroclinic waves. Although the direct impact of the Ekman pumping is to damp the total eddy energy, either the eddy available potential energy (EAPE) or the eddy kinetic energy (EKE), individually, can grow because of the Ekman pumping. Growth of EAPE is favored if the phase difference between the upper and lower wave fields is less than a quarter wavelength, and EKE is favored if the phase difference is greater than a quarter wavelength. A numerical model calculation shows that the EAPE growth occurs directly through the Ekman pumping and that the increased EAPE can in turn lead to further growth by strengthening the baroclinic energy conversion from zonal available potential energy to the EAPE. Through this indirect effect, the Ekman pumping can increase the net production of total eddy energy.

Corresponding author address: Sukyoung Lee, Department of Meteorology, The Pennsylvania State University, University Park, PA 16802. Email: sl@meteo.psu.edu

Abstract

A two-layer quasigeostrophic model is used to study the effect of lower boundary Ekman pumping on the energetics of baroclinic waves. Although the direct impact of the Ekman pumping is to damp the total eddy energy, either the eddy available potential energy (EAPE) or the eddy kinetic energy (EKE), individually, can grow because of the Ekman pumping. Growth of EAPE is favored if the phase difference between the upper and lower wave fields is less than a quarter wavelength, and EKE is favored if the phase difference is greater than a quarter wavelength. A numerical model calculation shows that the EAPE growth occurs directly through the Ekman pumping and that the increased EAPE can in turn lead to further growth by strengthening the baroclinic energy conversion from zonal available potential energy to the EAPE. Through this indirect effect, the Ekman pumping can increase the net production of total eddy energy.

Corresponding author address: Sukyoung Lee, Department of Meteorology, The Pennsylvania State University, University Park, PA 16802. Email: sl@meteo.psu.edu

Save
  • Bretherton, F. P., 1966: Baroclinic instability and the short wavelength cut-off in terms of potential vorticity. Quart. J. Roy. Meteor. Soc., 92 , 335345.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1949: A numerical method for predicting the perturbations of the middle latitude westerlies. Tellus, 1 , 3854.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 , 3352.

  • Held, I. M., and V. D. Larichev, 1996: Scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci., 53 , 945952.

    • Search Google Scholar
    • Export Citation
  • Holopainen, E. O., 1961: On the effect of friction in baroclinic waves. Tellus, 13 , 363367.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • Hua, B. L., and D. B. Haidvogel, 1986: Numerical simulations of the vertical structure of quasi-geostrophic turbulence. J. Atmos. Sci., 43 , 29232936.

    • Search Google Scholar
    • Export Citation
  • James, I. N., 1987: Suppression of baroclinic instability in horizontally sheared flows. J. Atmos. Sci., 44 , 37103720.

  • James, I. N., and L. J. Gray, 1986: Concerning the effect of surface drag on the circulation of a baroclinic planetary atmosphere. Quart. J. Roy. Meteor. Soc., 112 , 12311250.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and I. M. Held, 2003: Diffusivity, kinetic energy dissipation, and closure theories for the poleward eddy heat flux. J. Atmos. Sci., 60 , 29072916.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 2010: Finite-amplitude equilibration of baroclinic waves on a jet. J. Atmos. Sci., 67 , 434451.

  • Lee, S., and I. M. Held, 1991: Subcritical instability and hysteresis in a two-layer model. J. Atmos. Sci., 48 , 10711077.

  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7 , 157167.

  • Pedlosky, J., 1970: Finite-amplitude baroclinic waves. J. Atmos. Sci., 27 , 1530.

  • Pedlosky, J., 1983: The growth and decay of finite-amplitude baroclinic waves. J. Atmos. Sci., 40 , 18631876.

  • Rivière, P., A. M. Treguier, and P. Klein, 2004: Effects of bottom friction on nonlinear equilibration of an oceanic baroclinic jet. J. Phys. Oceanogr., 34 , 416432.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2006: On the self-maintenance of midlatitude jets. J. Atmos. Sci., 63 , 21092122.

  • Thompson, A. F., and W. R. Young, 2007: Two-layer baroclinic eddy heat fluxes: Zonal flows and energy balance. J. Atmos. Sci., 64 , 32143231.

    • Search Google Scholar
    • Export Citation
  • Weng, H-Y., and A. Barcilon, 1991: Asymmetric Ekman dissipation, sloping boundaries and linear baroclinic instability. Geophys. Astrophys. Fluid Dyn., 59 , 124.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 78 30 2
PDF Downloads 37 16 1