• Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Atmos. Sci., 17 , 24932525.

  • Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and K-M. Xu, 1990: The macroscopic behavior of simulated cumulus convection and semiprognostic tests of the Arakawa–Schubert cumulus parameterization. Proc. Indo-U.S. Seminar on Parameterization of Subgrid-Scale Processes in Dynamical Models of Medium-Range Prediction and Global Climate, Pune, India, Indian Institute of Tropical Meteorology, 3–18.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and C. S. Konor, 1996: Vertical differencing of the primitive equations based on the Charney–Phillips grid in hybrid σp vertical coordinates. Mon. Wea. Rev., 124 , 511528.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., , M. Köhler, , T. Jung, , F. Doblas-Reyes, , M. Leutbecher, , M. J. Rodwell, , F. Vitart, , and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134 , 13371351. doi:10.1002/qj.289.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., , A. H. Sobel, , and Y. Kushnir, 2006: AGCM precipitation biases in the tropical Atlantic. J. Climate, 19 , 935958.

  • Bretherton, C. S., , J. R. McCaa, , and H. Grenier, 2004a: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132 , 864882.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , M. E. Peters, , and L. E. Back, 2004b: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17 , 15171528.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., , and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54 , 27602774.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2010: A cumulus parameterization with state-dependent entrainment rate. Part II: Impact on climatology in a general circulation model. J. Atmos. Sci., 67 , 21942211.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., , R. H. Johnson, , P. T. Haertel, , and J. Wang, 2003: Corrected TOGA COARE sounding humidity data: Impact on diagnosed properties of convection and climate over the warm pool. J. Climate, 16 , 23702384.

    • Search Google Scholar
    • Export Citation
  • Cohen, C., 2000: A quantitative investigation of entrainment and detrainment in numerically simulated cumulonimbus clouds. J. Atmos. Sci., 57 , 16571674.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., , I. Beau, , P. Bechtold, , J-Y. Grandpeix, , J-M. Piriou, , J-L. Redelsperger, , and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130 , 30553079. doi:10.1256/qj.03.130.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48 , 23132335.

  • Esbensen, S., 1978: Bulk thermodynamic effects and properties of small tropical cumuli. J. Atmos. Sci., 35 , 826837.

  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convective parameterization (CRCP). J. Atmos. Sci., 58 , 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003: MJO-like coherent structures: Sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 60 , 847864.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., , and A. R. Brown, 1999: A similarity hypothesis for shallow-cumulus transports. Quart. J. Roy. Meteor. Soc., 125 , 19131936.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., 2001: Estimation of entrainment rate in simple models of convective clouds. Quart. J. Roy. Meteor. Soc., 127 , 5372.

  • Gregory, D., , R. Kershaw, , and P. M. Inness, 1997: Parameterization of momentum transport by convection. II: Tests in single-column and general circulation models. Quart. J. Roy. Meteor. Soc., 123 , 11531183.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , J-J. Morcrette, , C. Jakob, , A. C. M. Beljaars, , and T. Stockdale, 2000: Revision of convection, radiation and cloud schemes in the ECMWF integrated forecasting system. Quart. J. Roy. Meteor. Soc., 126 , 16851710.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., , and S. Emori, Eds. 2004: K-1 coupled GCM (MIROC) description. K-1 Tech. Rep. 1, 34 pp. [Available online at http://www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/tech-repo.pdf].

    • Search Google Scholar
    • Export Citation
  • Heus, T., , G. van Dijk, , H. J. J. Jonker, , and H. E. A. Van den Akker, 2008: Mixing in shallow cumulus clouds studied by Lagrangian particle tracking. J. Atmos. Sci., 65 , 25812597.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , T. M. Rickenbach, , S. A. Rutledge, , P. E. Ciesielski, , and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12 , 23972418.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and D. A. Randall, 2001: A cloud-resolving model as a cloud parameterization in the NCAR community climate system model: Preliminary results. Geophys. Res. Lett., 28 , 36173620.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, C., 1999a: Some bulk properties of cumulus ensembles simulated by a cloud-resolving model. Part I: Cloud root properties. J. Atmos. Sci., 56 , 37243735.

    • Search Google Scholar
    • Export Citation
  • Lin, C., 1999b: Some bulk properties of cumulus ensembles simulated by a cloud-resolving model. Part II: Entrainment profiles. J. Atmos. Sci., 56 , 37363748.

    • Search Google Scholar
    • Export Citation
  • Lin, C., , and A. Arakawa, 1997a: The macroscopic entrainment processes of simulated cumulus ensemble. Part I: Entrainment sources. J. Atmos. Sci., 54 , 10271043.

    • Search Google Scholar
    • Export Citation
  • Lin, C., , and A. Arakawa, 1997b: The macroscopic entrainment processes of simulated cumulus ensemble. Part II: Testing the entraining-plume model. J. Atmos. Sci., 54 , 10441053.

    • Search Google Scholar
    • Export Citation
  • Lin, J-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19 , 26652690.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2543.

  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Murata, A., , and M. Ueno, 2005: The vertical profile of entrainment rate simulated by a cloud-resolving model and application to a cumulus parameterization. J. Meteor. Soc. Japan, 83 , 745770.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., , and H. Niino, 2004: An improved Mellor–Yamada Level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112 , 131.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , O. Peters, , J. W-B. Lin, , K. Hales, , and C. E. Holloway, 2008: Rethinking convective quasi-equilibrium: Observational constraints for stochastic convective schemes in climate models. Philos. Trans. Roy. Soc. London, 366A , 25812604.

    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., , A. P. Siebesma, , and H. J. J. Jonker, 2002: A multiparcel method for shallow cumulus convection. J. Atmos. Sci., 59 , 16551668.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., , R. Oki, , K. Nakamura, , K. Tsuboki, , N. Misawa, , T. Asai, , and Y-M. Kodama, 1995: 4–5-day-period variation and low-level dry air observed in the equatorial western Pacific during the TOGA COARE IOP. J. Meteor. Soc. Japan, 73 , 267290.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., , S. Sugata, , M. Takahashi, , T. Nakajima, , and A. Sumi, 1997: Study on the climate system and mass transport by a climate model. Center for Global Environmental Research Rep. 3, 91 pp.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., 1979: The entrainment mechanism in Colorado cumuli. J. Atmos. Sci., 36 , 24672478.

  • Pan, D-M., 1995: Development and application of a prognostic cumulus parameterization. Ph.D. thesis, Colorado State University, 207 pp.

  • Pan, D-M., , and D. A. Randall, 1998: A cumulus parameterization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124 , 949981.

  • Peters, O., , and J. D. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nat. Phys., 2 , 393396.

  • Raga, G. B., , J. B. Jensen, , and J. B. Baker, 1990: Characteristics of cumulus band clouds off the coast of Hawaii. J. Atmos. Sci., 47 , 338355.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., , and D-M. Pan, 1993: Implementation of the Arakawa–Schubert cumulus parameterization with a prognostic closure. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 137–144.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., , D-M. Pan, , P. Ding, , and D. G. Cripe, 1997: Quasi-equilibrium. The Physics and Parameterization of Moist Atmospheric Convection, R. K. Smith, Ed., Kluwer Academic, 359–386.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and A. M. Blyth, 1986: A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43 , 27082718.

  • Redelsperger, J. L., , D. B. Parsons, , and F. Guichard, 2002: Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA COARE. J. Atmos. Sci., 59 , 24382457.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., , T. Matsuno, , H. Tomita, , H. Miura, , T. Nasuno, , and S. Iga, 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227 , 34863514. doi:10.1016/j.jcp.2007.02.006.

    • Search Google Scholar
    • Export Citation
  • Sekiguchi, M., , and T. Nakajima, 2008: A k-distribution based radiation code and its computational optimization for an atmospheric general circulation model. J. Quant. Spectrosc. Radiat. Transfer, 109 , 27792793. doi:10.1016/j.jqsrt.2008.07.013.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 1999: Convective precursors and predictability in the tropical western Pacific. Mon. Wea. Rev., 127 , 29772991.

  • Sherwood, S. C., , and R. Wahrlich, 1999: Observed evolution of tropical deep convective events and their environment. Mon. Wea. Rev., 127 , 17771795.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., 1998: Shallow cumulus convection. Buoyant Convection in Geophysical Flows, E. J. Plate et al., Eds., Kluwer, 441–486.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., , and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci., 52 , 650666.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large-eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60 , 12011219.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., , and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97 , 471489.

  • Sobel, A. H., , S. E. Yuter, , C. S. Bretherton, , and G. N. Kiladis, 2004: Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132 , 422444.

    • Search Google Scholar
    • Export Citation
  • Squires, P., 1958: Penetrative downdraughts in cumuli. Tellus, 10 , 381389.

  • Stevens, B., and Coauthors, 2001: Simulations of trade wind cumuli under a strong inversion. J. Atmos. Sci., 58 , 18701891.

  • Suzuki, T., , Y. N. Takayabu, , and S. Emori, 2006: Coupling mechanisms between equatorial waves and cumulus convection in an AGCM. Dyn. Atmos. Oceans, 42 , 81106. doi:10.1016/j.dynatmoce.2006.02.004.

    • Search Google Scholar
    • Export Citation
  • Suzuki, T., , K. Ninomiya, , and S. Emori, 2008a: The impact of cumulus suppression on the Baiu front simulated by an AGCM. J. Meteor. Soc. Japan, 86 , 119140. doi:10.2151/jmsj.86.119.

    • Search Google Scholar
    • Export Citation
  • Suzuki, T., , K. Ninomiya, , Y. N. Takayabu, , and S. Emori, 2008b: AGCM experiment of the effect of cumulus suppression on convection center formation over the Bay of Bengal. J. Geophys. Res., 113 , D16104. doi:10.1029/2007JD009686.

    • Search Google Scholar
    • Export Citation
  • Swann, H., 2001: Evaluation of the mass-flux approach to parametrizing deep convection. Quart. J. Roy. Meteor. Soc., 127 , 12391260.

  • Takayabu, Y. N., , J. Yokomori, , and K. Yoneyama, 2006: A diagnostic study on interactions between atmospheric thermodynamics structure and cumulus convection over the tropical western Pacific Ocean and over the Indochina Peninsula. J. Meteor. Soc. Japan, 84A , 151169. doi:10.2151/jmsj.84A.151.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., , T. Nozawa, , S. Emori, , T. Y. Nakajima, , and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res., 110 , D02202. doi:10.1029/2004JD005029.

    • Search Google Scholar
    • Export Citation
  • Taylor, T. R., , and M. B. Baker, 1991: Entrainment and detrainment in cumulus clouds. J. Atmos. Sci., 48 , 112121.

  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58 , 529545.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., , S. Emori, , M. Satoh, , and H. Miura, 2008: A PDF-based hybrid prognostic cloud scheme for general circulation models. Climate Dyn., 33 , 795816. doi:10.1007/s00382-008-0489-0.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., 1991: The coupling of cumulus convection with large-scale processes. Ph.D. thesis, University of California, Los Angeles, 250 pp.

  • Xu, K-M., 1993: Cumulus ensemble simulation. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 221–235.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., , and D. A. Randall, 2001: Updraft and downdraft statistics of simulated tropical and midlatitude cumulus convection. J. Atmos. Sci., 58 , 16301649.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 208 208 9
PDF Downloads 141 141 12

A Cumulus Parameterization with State-Dependent Entrainment Rate. Part I: Description and Sensitivity to Temperature and Humidity Profiles

View More View Less
  • 1 Research Institute for Global Change, JAMSTEC, Yokohama, Kanagawa, Japan
  • | 2 Central Research Institute of Electric Power Industry, Chiyoda, Tokyo, Japan
© Get Permissions
Restricted access

Abstract

A new cumulus parameterization is developed for which an entraining plume model is adopted. The lateral entrainment rate varies vertically depending on the surrounding environment. Two different formulations are examined for the rate. The cumulus ensemble is spectrally represented according to the updraft velocity at cloud base. Cloud-base mass flux is determined with prognostic convective kinetic energy closure. The entrainment rate tends to be large near cloud base because of the small updraft velocity near that level. Deep convection tends to be suppressed when convective available potential energy is small because of upward reduction of in-cloud moist static energy. Dry environmental air significantly reduces in-cloud humidity mainly because of the large entrainment rate in the lower troposphere, which leads to suppression of deep convection, consistent with observations and previous results of cloud-resolving models. The change in entrainment rate has the potential to influence cumulus convection through many feedbacks. The results of an atmospheric general circulation model are improved in both climatology and variability. A representation of the South Pacific convergence zone and the double intertropical convergence zone is improved. The moist Kelvin waves are represented without empirical triggering schemes with a reasonable equivalent depth. A spectral analysis shows a strong signal of the Madden–Julian oscillation. The scheme provides new insights and better understanding of the interaction between cumuli and the surrounding environment.

Corresponding author address: Minoru Chikira, Research Institute for Global Change, JAMSTEC, 3173-25 Showa-machi Kanazawa-ku, Yokohama, Kanagawa, 236-0001, Japan. Email: chikira@jamstec.go.jp

Abstract

A new cumulus parameterization is developed for which an entraining plume model is adopted. The lateral entrainment rate varies vertically depending on the surrounding environment. Two different formulations are examined for the rate. The cumulus ensemble is spectrally represented according to the updraft velocity at cloud base. Cloud-base mass flux is determined with prognostic convective kinetic energy closure. The entrainment rate tends to be large near cloud base because of the small updraft velocity near that level. Deep convection tends to be suppressed when convective available potential energy is small because of upward reduction of in-cloud moist static energy. Dry environmental air significantly reduces in-cloud humidity mainly because of the large entrainment rate in the lower troposphere, which leads to suppression of deep convection, consistent with observations and previous results of cloud-resolving models. The change in entrainment rate has the potential to influence cumulus convection through many feedbacks. The results of an atmospheric general circulation model are improved in both climatology and variability. A representation of the South Pacific convergence zone and the double intertropical convergence zone is improved. The moist Kelvin waves are represented without empirical triggering schemes with a reasonable equivalent depth. A spectral analysis shows a strong signal of the Madden–Julian oscillation. The scheme provides new insights and better understanding of the interaction between cumuli and the surrounding environment.

Corresponding author address: Minoru Chikira, Research Institute for Global Change, JAMSTEC, 3173-25 Showa-machi Kanazawa-ku, Yokohama, Kanagawa, 236-0001, Japan. Email: chikira@jamstec.go.jp

Save