• Arakawa, A., , and C. S. Konor, 1996: Vertical differencing of the primitive equations based on the Charney–Phillips grid in hybrid-p vertical coordinates. Mon. Wea. Rev., 124 , 511528.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., , A. H. Sobel, , and Y. Kushnir, 2006: AGCM precipitation biases in the tropical Atlantic. J. Climate, 19 , 935958.

  • Bretherton, C. S., , M. E. Peters, , and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17 , 15171528.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., , and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54 , 27602774.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., , and M. Sugiyama, 2010: A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles. J. Atmos. Sci., 67 , 21712193.

    • Search Google Scholar
    • Export Citation
  • Cohen, C., 2000: A quantitative investigation of entrainment and detrainment in numerically simulated cumulonimbus clouds. J. Atmos. Sci., 57 , 16571674.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19 , 46054630.

  • Derbyshire, S. H., , I. Beau, , P. Bechtold, , J-Y. Grandpeix, , J-M. Piriou, , J-L. Redelsperger, , and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130 , 30553079. doi:10.1256/qj.03.130.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003: MJO-like coherent structures: Sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 60 , 847864.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., , and A. R. Brown, 1999: A similarity hypothesis for shallow-cumulus transports. Quart. J. Roy. Meteor. Soc., 125 , 19131936.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., 2001: Estimation of entrainment rate in simple models of convective clouds. Quart. J. Roy. Meteor. Soc., 127 , 5372.

  • Gregory, D., , J-J. Morcrette, , C. Jakob, , A. C. M. Beljaars, , and T. Stockdale, 2000: Revision of convection, radiation and cloud schemes in the ECMWF integrated forecasting system. Quart. J. Roy. Meteor. Soc., 126 , 16851710.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., , and S. Emori, 2004: K-1 coupled GCM (MIROC) description. K-1 Tech. Rep. 1, 34 pp. [Available online at http://www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/tech-repo.pdf].

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , T. M. Rickenbach, , S. A. Rutledge, , P. E. Ciesielski, , and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12 , 23972418.

    • Search Google Scholar
    • Export Citation
  • Lin, C., 1999: Some bulk properties of cumulus ensembles simulated by a cloud-resolving model. Part II: Entrainment profiles. J. Atmos. Sci., 56 , 37363748.

    • Search Google Scholar
    • Export Citation
  • Lin, C., , and A. Arakawa, 1997: The macroscopic entrainment processes of simulated cumulus ensemble. Part II: Testing the entraining-plume model. J. Atmos. Sci., 54 , 10441053.

    • Search Google Scholar
    • Export Citation
  • Lin, J-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20 , 44974525.

  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Murata, A., , and M. Ueno, 2005: The vertical profile of entrainment rate simulated by a cloud-resolving model and application to a cumulus parameterization. J. Meteor. Soc. Japan, 83 , 745770.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., , and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112 , 131.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , O. Peters, , J. W-B. Lin, , K. Hales, , and C. E. Holloway, 2008: Rethinking convective quasi-equilibrium: Observational constraints for stochastic convective schemes in climate models. Philos. Trans. Roy. Soc. London, 366A , 25812604.

    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., , A. P. Siebesma, , and H. J. J. Jonker, 2002: A multiparcel method for shallow cumulus convection. J. Atmos. Sci., 59 , 16551668.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., , R. Oki, , K. Nakamura, , K. Tsuboki, , N. Misawa, , T. Asai, , and Y-M. Kodama, 1995: 4–5-day-period variation and low-level dry air observed in the equatorial western Pacific during the TOGA COARE IOP. J. Meteor. Soc. Japan, 73 , 267290.

    • Search Google Scholar
    • Export Citation
  • Pan, D-M., , and D. A. Randall, 1998: A cumulus parameterization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124 , 949981.

  • Peters, O., , and J. D. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nat. Phys., 2 , 393396.

  • Redelsperger, J. L., , D. B. Parsons, , and F. Guichard, 2002: Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA COARE. J. Atmos. Sci., 59 , 24382457.

    • Search Google Scholar
    • Export Citation
  • Sekiguchi, M., , and T. Nakajima, 2008: A k-distribution based radiation code and its computational optimization for an atmospheric general circulation model. J. Quant. Spectrosc. Radiat. Transfer, 109 , 27792793. doi:10.1016/j.jqsrt.2008.07.013.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 1999: Convective precursors and predictability in the tropical western Pacific. Mon. Wea. Rev., 127 , 29772991.

  • Sherwood, S. C., , and R. Wahrlich, 1999: Observed evolution of tropical deep convective events and their environment. Mon. Wea. Rev., 127 , 17771795.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , S. E. Yuter, , C. S. Bretherton, , and G. N. Kiladis, 2004: Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132 , 422444.

    • Search Google Scholar
    • Export Citation
  • Song, X., , and G. J. Zhang, 2009: Convection parameterization, tropical Pacific double ITCZ, and upper-ocean biases in the NCAR CCSM3. Part I: Climatology and atmospheric feedback. J. Climate, 22 , 42994315.

    • Search Google Scholar
    • Export Citation
  • Swann, H., 2001: Evaluation of the mass-flux approach to parametrizing deep convection. Quart. J. Roy. Meteor. Soc., 127 , 12391260.

  • Takayabu, Y. N., , J. Yokomori, , and K. Yoneyama, 2006: A diagnostic study on interactions between atmospheric thermodynamics structure and cumulus convection over the tropical western Pacific Ocean and over the Indochina Peninsula. J. Meteor. Soc. Japan, 84A , 151169. doi:10.2151/jmsj.84A.151.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., , T. Nozawa, , S. Emori, , T. Y. Nakajima, , and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res., 110 , D02202. doi:10.1029/2004JD005029.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58 , 529545.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., , S. Emori, , M. Satoh, , and H. Miura, 2009: A PDF-based hybrid prognostic cloud scheme for general circulation models. Climate Dyn., 33 , 795816. doi:10.1007/s00382-008-0489-0.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., 1993: Cumulus ensemble simulation. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 221–235.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107 , 4220. doi:10.1029/2001JD001005.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33 , 407446.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and M. Mu, 2005: Effects of modifications to the Zhang-McFarlane convection parameterization on the simulation of the tropical precipitation in the National Center for Atmospheric Research Community Climate Model, version 3. J. Geophys. Res., 110 , D09109. doi:10.1029/2004JD005617.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 28 28 4
PDF Downloads 21 21 4

A Cumulus Parameterization with State-Dependent Entrainment Rate. Part II: Impact on Climatology in a General Circulation Model

View More View Less
  • 1 Research Institute for Global Change, JAMSTEC, Yokohama, Kanagawa, Japan
© Get Permissions
Restricted access

Abstract

The impact of a new cumulus parameterization developed in of this paper on climatology in an atmospheric general circulation model (AGCM) is compared with that of the Arakawa–Schubert scheme. The parameterization is characterized by a vertically variable entrainment rate depending on the surrounding environment. Two kinds of formulations on entrainment rate are tested and produce similar results in the AGCM. The results show reduction of precipitation over land and increase over the sea, weakening of the southern side of the double intertropical convergence zone (ITCZ) over the southeastern Pacific, and better representation of the South Pacific convergence zone (SPCZ), all of which are consistent with observations. The population of cumulus congestus is significantly increased, thereby inducing additional heating in the lower troposphere. The diurnal variation over land shows that deep convection tends to be suppressed earlier because of the reduction of convective available potential energy and tropospheric humidity caused by the convective activity itself. An analysis of the daily outputs suggests that a better representation of the cumulus congestus and sensitivity of the scheme to tropospheric humidity are important for the realistic representation of the precipitation over the double ITCZ and SPCZ.

Corresponding author address: Minoru Chikira, Research Institute for Global Change, JAMSTEC, 3173-25 Showa-machi Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. Email: chikira@jamstec.go.jp

Abstract

The impact of a new cumulus parameterization developed in of this paper on climatology in an atmospheric general circulation model (AGCM) is compared with that of the Arakawa–Schubert scheme. The parameterization is characterized by a vertically variable entrainment rate depending on the surrounding environment. Two kinds of formulations on entrainment rate are tested and produce similar results in the AGCM. The results show reduction of precipitation over land and increase over the sea, weakening of the southern side of the double intertropical convergence zone (ITCZ) over the southeastern Pacific, and better representation of the South Pacific convergence zone (SPCZ), all of which are consistent with observations. The population of cumulus congestus is significantly increased, thereby inducing additional heating in the lower troposphere. The diurnal variation over land shows that deep convection tends to be suppressed earlier because of the reduction of convective available potential energy and tropospheric humidity caused by the convective activity itself. An analysis of the daily outputs suggests that a better representation of the cumulus congestus and sensitivity of the scheme to tropospheric humidity are important for the realistic representation of the precipitation over the double ITCZ and SPCZ.

Corresponding author address: Minoru Chikira, Research Institute for Global Change, JAMSTEC, 3173-25 Showa-machi Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. Email: chikira@jamstec.go.jp

Save