Cellular Statistical Models of Broken Cloud Fields. Part I: Theory

Mikhail D. Alexandrov Department of Applied Physics and Applied Mathematics, Columbia University, and NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Mikhail D. Alexandrov in
Current site
Google Scholar
PubMed
Close
,
Alexander Marshak NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Alexander Marshak in
Current site
Google Scholar
PubMed
Close
, and
Andrew S. Ackerman NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Andrew S. Ackerman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new analytical statistical model describing the structure of broken cloud fields is presented. It depends on two parameters (cell size and occupancy probability) and provides chord distributions of clouds and gaps between them by length, as well as the cloud fraction distribution. This approach is based on the assumption that the structure of a cloud field is determined by a semiregular grid of cells (an abstraction of the atmospheric convective cells), which are filled with cloud with some probability. First, a simple discrete model is introduced, where clouds and gaps can occupy an integer number of cells, and then a continuous analog is developed, allowing for arbitrary cloud and gap sizes. The influence of a finite sample size on the retrieved statistics is also described.

Corresponding author address: Mikhail Alexandrov, NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025. Email: malexandrov@giss.nasa.gov

Abstract

A new analytical statistical model describing the structure of broken cloud fields is presented. It depends on two parameters (cell size and occupancy probability) and provides chord distributions of clouds and gaps between them by length, as well as the cloud fraction distribution. This approach is based on the assumption that the structure of a cloud field is determined by a semiregular grid of cells (an abstraction of the atmospheric convective cells), which are filled with cloud with some probability. First, a simple discrete model is introduced, where clouds and gaps can occupy an integer number of cells, and then a continuous analog is developed, allowing for arbitrary cloud and gap sizes. The influence of a finite sample size on the retrieved statistics is also described.

Corresponding author address: Mikhail Alexandrov, NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025. Email: malexandrov@giss.nasa.gov

Save
  • Aida, M., 1977: Scatter of solar radiation as a function of cloud dimensions and orientations. J. Quant. Spectrosc. Radiat. Transfer, 17 , 303310.

    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., A. Marshak, B. Cairns, A. A. Lacis, and B. E. Carlson, 2004: Automated cloud screening algorithm for MFRSR data. Geophys. Res. Lett., 31 , L04118. doi:10.1029/2003GL019105.

    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., A. S. Ackerman, and A. Marshak, 2010: Cellular statistical models of broken cloud fields. Part II: Comparison with a dynamical model and statistics of diverse ensembles. J. Atmos. Sci., 67 , 21522170.

    • Search Google Scholar
    • Export Citation
  • Astin, I., and B. G. Latter, 1998: A case for exponential cloud fields? J. Appl. Meteor., 37 , 13751382.

  • Astin, I., and L. Di Girolamo, 1999: A general formalism for the distribution of the total length of a geophysical parameter along a finite transect. IEEE Trans. Geosci. Remote Sens., 37 , 508512.

    • Search Google Scholar
    • Export Citation
  • Astin, I., L. Di Girolamo, and H. M. van de Poll, 2001: Bayesian confidence intervals for true fractional coverage from finite transect measurements: Implications for cloud studies from space. J. Geophys. Res., 106 , 1730317310.

    • Search Google Scholar
    • Export Citation
  • Baxter, R. J., 1982: Exactly Solved Models in Statistical Mechanics. Academic Press, 498 pp.

  • Berg, L. K., and E. I. Kassianov, 2008: Temporal variability of fair-weather cumulus statistics at the ACRF SGP site. J. Climate, 21 , 33443358.

    • Search Google Scholar
    • Export Citation
  • Breon, F-M., 1992: Reflectance of broken cloud fields: Simulation and parameterization. J. Atmos. Sci., 49 , 12211232.

  • Byrne, N., 2005: 3D radiative transfer in stochastic media. Three-Dimensional Radiative Transfer in Cloudy Atmospheres, A. Marshak and A. B. Davis, Eds., Springer, 385–424.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., 1994: Bounded cascade clouds: Albedo and effective thickness. Nonlinear Processes Geophys., 1 , 156167.

  • Cahalan, R. F., and J. H. Joseph, 1989: Fractal statistics of cloud fields. Mon. Wea. Rev., 117 , 261272.

  • Conolly, B. W., 1971: On randomized random walks. SIAM Rev., 13 , 8199.

  • Ellingson, R. G., 1982: On the effects of cumulus dimensions on longwave irradiance and heating rate calculations. J. Atmos. Sci., 39 , 886896.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., and W. J. Wiscombe, 2004: An algorithm for generating stochastic cloud fields from radar profile statistics. Atmos. Res., 72 , 263289.

    • Search Google Scholar
    • Export Citation
  • Gradshteyn, I. S., and I. M. Ryzhik, 1965: Table of Integrals, Series, and Products. Academic Press, 1130 pp.

  • Harrison, L., J. Michalsky, and J. Berndt, 1994: Automated multifilter rotating shadow-band radiometer: An instrument for optical depth and radiation measurements. Appl. Opt., 33 , 51185125.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and S. F. Kew, 2005: A 3D stochastic cloud model for investigating the radiative properties of inhomogeneous cirrus clouds. Quart. J. Roy. Meteor. Soc., 131 , 25852608.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: Aeronet—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66 , 116.

    • Search Google Scholar
    • Export Citation
  • Isichenko, M. B., 1992: Percolation, statistical topography, and transport in random media. Rev. Mod. Phys., 64 , 9611043.

  • Joseph, J. H., and R. F. Cahalan, 1990: Nearest neighbor spacing of fair weather cumulus clouds. J. Appl. Meteor., 29 , 793805.

  • Kassianov, E., 2003: Stochastic radiative transfer in multilayer broken clouds. Part I: Markovian approach. J. Quant. Spectrosc. Radiat. Transfer, 77 , 373394.

    • Search Google Scholar
    • Export Citation
  • Kite, A., 1987: The albedo of broken cloud fields. Quart. J. Roy. Meteor. Soc., 113 , 517531.

  • Koren, I., L. Oreopoulos, G. Feingold, L. A. Remer, and O. Altaratz, 2008: How small is a small cloud? Atmos. Chem. Phys., 8 , 38553864.

    • Search Google Scholar
    • Export Citation
  • Lane, D. E., K. Goris, and R. C. J. Somerville, 2002: Radiative transfer through broken clouds: Observations and model validation. J. Climate, 15 , 29212933.

    • Search Google Scholar
    • Export Citation
  • Lane-Veron, D. E., and R. C. J. Somerville, 2004: Stochastic theory of radiative transfer through generalized cloud field. J. Geophys. Res., 109 , D18113. doi:10.1029/2004JD004524.

    • Search Google Scholar
    • Export Citation
  • Malvagi, F., R. N. Byrne, G. Pomraning, and R. C. J. Somerville, 1993: Stochastic radiative transfer in a partially cloudy atmosphere. J. Atmos. Sci., 50 , 21462158.

    • Search Google Scholar
    • Export Citation
  • Marshak, A., A. Davis, R. F. Cahalan, and W. J. Wiscombe, 1994: Bounded cascade models as nonstationary multifractals. Phys. Rev. E, 49 , 5569.

    • Search Google Scholar
    • Export Citation
  • Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, 1953: Equation of state calculations by fast computing machines. J. Chem. Phys., 21 , 10871092.

    • Search Google Scholar
    • Export Citation
  • Nagel, K., and E. Raschke, 1992: Self-organizing criticality in cloud formation? Physica A, 182 , 519531.

  • Nicholls, S., 1989: The structure of radiatively driven convection in stratocumulus. Quart. J. Roy. Meteor. Soc., 115 , 487511.

  • Plank, V. G., 1969: The size distribution of cumulus clouds in representative Florida populations. J. Appl. Meteor., 8 , 4667.

  • Prigarin, S. M., and A. Marshak, 2009: A simple stochastic model for generating broken cloud optical depth and cloud-top height fields. J. Atmos. Sci., 66 , 92104.

    • Search Google Scholar
    • Export Citation
  • Prigarin, S. M., T. B. Zhuravleva, and P. B. Volikova, 2002: Poisson model of broken multilayer cloudiness. Atmos. Ocean. Opt., 15 , 947954.

    • Search Google Scholar
    • Export Citation
  • Prudnikov, A. P., Y. A. Brychkov, and O. I. Marichev, 1986: Elementary Functions. Vol. 1, Integrals and Series, Gordon and Breach, 806 pp.

    • Search Google Scholar
    • Export Citation
  • Prudnikov, A. P., Y. A. Brychkov, and O. I. Marichev, 2002: Special Functions. Vol. 2, Integrals and Series, Taylor and Francis, 758 pp.

    • Search Google Scholar
    • Export Citation
  • Ramirez, J. A., and R. L. Bras, 1990: Clustered or regular cumulus cloud fields: The statistical character of observed and simulated cloud fields. J. Geophys. Res., 95 , 20352045.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and G. J. Huffman, 1980: A stochastic model of cumulus clumping. J. Atmos. Sci., 37 , 20682078.

  • Rodts, S. M. A., P. G. Duynkerke, and H. J. J. Jonker, 2003: Size distributions and dynamical properties of shallow cumulus clouds from aircraft observations and satellite data. J. Atmos. Sci., 60 , 18951912.

    • Search Google Scholar
    • Export Citation
  • Sánchez, A., T. F. Smith, and W. F. Krajewski, 1994: A three-dimensional atmospheric radiative transfer model based on the discrete-ordinates method. Atmos. Res., 33 , 283308.

    • Search Google Scholar
    • Export Citation
  • Sauvageot, H., F. Mesnard, and R. S. Tenorio, 1999: The relation between the area-average rain rate and the rain cell size distribution parameters. J. Atmos. Sci., 56 , 5770.

    • Search Google Scholar
    • Export Citation
  • Schertzer, D., and S. Lovejoy, 1987: Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. J. Geophys. Res., 92 , 96939714.

    • Search Google Scholar
    • Export Citation
  • Schmidt, K. S., V. Venema, F. D. Giuseppe, R. Scheirer, M. Wendisch, and P. Pilewskie, 2007: Reproducing cloud microphysics and irradiance measurements using three 3D cloud generators. Quart. J. Roy. Meteor. Soc., 133 , 765780.

    • Search Google Scholar
    • Export Citation
  • Settle, J. J., and H. M. van de Poll, 2007: On the Bayesian estimation of cloud fraction from lidar transects. J. Geophys. Res., 112 , D09211. doi:10.1029/2006JD007251.

    • Search Google Scholar
    • Export Citation
  • Smirnov, A., B. N. Holben, T. F. Eck, O. Dubovik, and I. Slutsker, 2000: Cloud screening and quality control algorithms for the AERONET database. Remote Sens. Environ., 73 , 337349.

    • Search Google Scholar
    • Export Citation
  • Su, B. J., and G. C. Pomraning, 1994: A stochastic description of a broken cloud field. J. Atmos. Sci., 51 , 19691977.

  • Swendsen, R. H., and J-S. Wang, 1987: Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett., 58 , 8688.

  • Takacs, L., 1957: On certain sojourn time problems in the theory of stochastic processes. Acta Math. Acad. Sci. Hung., 8 , 169191.

  • Titov, G. A., 1990: Statistical description of radiation transfer in clouds. J. Atmos. Sci., 47 , 2438.

  • Van de Poll, H. M., H. Grubb, and I. Astin, 2006: Uncertainty properties of cloud fraction estimates from random transect observations. J. Geophys. Res., 111 , D22218. doi:10.1029/2006JD007189.

    • Search Google Scholar
    • Export Citation
  • Venema, V., S. Bachner, H. W. Rust, and C. Simmer, 2006: Statistical characteristics of surrogate data based on geophysical measurements. Nonlinear Processes Geophys., 13 , 449466.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and R. M. Welch, 1986: Cumulus cloud properties derived using Landsat satellite data. J. Climate Appl. Meteor., 25 , 261276.

    • Search Google Scholar
    • Export Citation
  • Wolff, U., 1989: Collective Monte Carlo updating for spin systems. Phys. Rev. Lett., 62 , 361364.

  • Yau, M. K., and R. R. Rogers, 1984: An inversion problem on inferring the size distribution of precipitation areas from raingage measurements. J. Atmos. Sci., 41 , 439447.

    • Search Google Scholar
    • Export Citation
  • Zuev, V. E., and G. A. Titov, 1995: Radiative transfer in cloud fields with random geometry. J. Atmos. Sci., 52 , 176190.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 424 165 19
PDF Downloads 131 43 5