• Aguilar, D. A., , and B. R. Sutherland, 2006: Internal wave generation from rough topography. Phys. Fluids, 18 , 066603. doi:10.1063/1.2214538.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., , and M. R. Schoeberl, 1989: Breakdown of vertically propagating two-dimensional gravity waves forced by orography. J. Atmos. Sci., 46 , 21092134.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1995: Topographic Effects in Stratified Flows. Cambridge University Press, 492 pp.

  • Bauer, M. H., , G. J. Mayr, , I. Vergeiner, , and H. Pichler, 2000: Strongly nonlinear flow over and around a three-dimensional mountain as a function of the horizontal aspect ratio. J. Atmos. Sci., 57 , 39713991.

    • Search Google Scholar
    • Export Citation
  • Broutman, D., , J. W. Rottman, , and S. D. Eckermann, 2002: Maslov’s method for stationary hydrostatic mountain waves. Quart. J. Roy. Meteor. Soc., 128 , 11591172.

    • Search Google Scholar
    • Export Citation
  • Broutman, D., , J. W. Rottman, , and S. D. Eckermann, 2003: A simplified Fourier method for nonhydrostatic mountain waves. J. Atmos. Sci., 60 , 26862696.

    • Search Google Scholar
    • Export Citation
  • Broutman, D., , J. Ma, , S. D. Eckermann, , and J. Lindeman, 2006: Fourier-ray modeling of transient trapped lee waves. Mon. Wea. Rev., 134 , 28492856.

    • Search Google Scholar
    • Export Citation
  • Broutman, D., , S. D. Eckermann, , and J. W. Rottman, 2009: Practical application of two-turning-point theory to mountain-wave transmission through a wind jet. J. Atmos. Sci., 66 , 481494.

    • Search Google Scholar
    • Export Citation
  • Ding, L., , R. A. Calhoun, , and R. L. Street, 2003: Numerical simulation of strongly stratified flow over a three-dimensional hill. Bound.-Layer Meteor., 107 , 81114.

    • Search Google Scholar
    • Export Citation
  • Dupont, P., , Y. Kadri, , and J-M. Chomaz, 2001: Internal waves generated by the wake of Gaussian hills. Phys. Fluids, 13 , 32233233.

  • Durran, D. R., 1995: Pseudomomentum diagnostics for two-dimensional stratified compressible flow. J. Atmos. Sci., 52 , 39974009.

  • Epifanio, C. C., , and D. R. Durran, 2001: Three-dimensional effects in high-drag-state flows over long ridges. J. Atmos. Sci., 58 , 10511065.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , G. J. Shutts, , and J. R. Mitchell, 1998: A new gravity-wave-drag scheme incorporating anisotropic orography and low-level wave breaking: Impact upon the climate of the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 124 , 463493.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., , and W. H. Snyder, 1980: Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J. Fluid Mech., 96 , 671704.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , and D. K. Lilly, 1980: Mountain waves and momentum flux. Orographic Effects in Planetary Flows, R. Hide and P. W. White, Eds., GARP Publication Series, Vol. 23, WMO, 116–141.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , J. Dudhia, , and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136 , 39874004.

    • Search Google Scholar
    • Export Citation
  • Lindeman, J., 2008: A numerical study of topographical effects on flow regimes in the lower atmosphere. Ph. D. thesis, George Mason University, 151 pp.

  • Lindeman, J., , D. Broutman, , S. D. Eckermann, , J. Ma, , J. W. Rottman, , and Z. Boybeyi, 2008: Mesoscale model initialization of the Fourier method for mountain waves. J. Atmos. Sci., 65 , 27492756.

    • Search Google Scholar
    • Export Citation
  • Lott, F., , and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123 , 101127.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., , and J. F. Scinocca, 2005: The GCM response to current parameterizations of nonorographic gravity wave drag. J. Atmos. Sci., 62 , 23942413.

    • Search Google Scholar
    • Export Citation
  • Mercier, M. J., , N. B. Garnier, , and T. Dauxois, 2008: Reflection and diffraction of internal waves analyzed with the Hilbert transform. Phys. Fluids, 118 , 086601. doi:10.1063/1.2963136.

    • Search Google Scholar
    • Export Citation
  • Miranda, P. M. A., , and I. N. James, 1992: Non-linear three-dimensional effects on gravity-wave drag: Splitting flow and breaking waves. Quart. J. Roy. Meteor. Soc., 118 , 10571081.

    • Search Google Scholar
    • Export Citation
  • Ólafsson, H., , and P. Bougeault, 1996: Nonlinear flow past an elliptic mountain ridge. J. Atmos. Sci., 53 , 24652489.

  • Ólafsson, H., , and P. Bougeault, 1997: The effect of rotation and surface friction on orographic drag. J. Atmos. Sci., 54 , 193210.

  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127 , 279304.

    • Search Google Scholar
    • Export Citation
  • Phillips, D. S., 1984: Analytical surface pressure and drag for linear hydrostatic flow over three-dimensional elliptical mountains. J. Atmos. Sci., 41 , 10731084.

    • Search Google Scholar
    • Export Citation
  • Satomura, T., , and K. Sato, 1999: Secondary generation of gravity waves associated with the breaking of mountain waves. J. Atmos. Sci., 56 , 38473858.

    • Search Google Scholar
    • Export Citation
  • Schär, C., , and D. R. Durran, 1997: Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J. Atmos. Sci., 54 , 534554.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., , and N. A. McFarlane, 2000: The parameterization of drag induced by stratified flow over anisotropic orography. Quart. J. Roy. Meteor. Soc., 126 , 23532393.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., , N. A. McFarlane, , M. Lazare, , J. Li, , and D. Plummer, 2008: The CCCma third-generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8 , 70557074.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN–475+STR, 113 pp.

  • Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32 , 348364.

  • Smith, R. B., 1988: Linear theory of stratified flow past an isolated mountain in isosteric coordinates. J. Atmos. Sci., 45 , 38893896.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989a: Hydrostatic air-flow over mountains. Advances in Geophysics, Vol. 31, Academic Press, 1–41.

  • Smith, R. B., 1989b: Mountain-induced stagnation points in hydrostatic flow. Tellus, 41A , 270274.

  • Smith, S. A., , J. D. Doyle, , A. R. Brown, , and S. Webster, 2006: Sensitivity of resolved mountain drag to model resolution for MAP case-studies. Quart. J. Roy. Meteor. Soc., 132 , 14671487.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., , and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46 , 11541164.

    • Search Google Scholar
    • Export Citation
  • Snyder, W. H., , R. S. Thompson, , R. E. Eskridge, , R. E. Lawson, , I. P. Castro, , J. T. Lee, , J. C. R. Hunt, , and Y. Ogawa, 1985: The structure of strongly stratified flow over hills: Dividing-streamline concept. J. Fluid Mech., 152 , 249288.

    • Search Google Scholar
    • Export Citation
  • Stein, J., 1992: Investigation of the regime diagram of hydrostatic flow over a mountain with a primitive equation model. Part I: Two-dimensional flows. Mon. Wea. Rev., 120 , 29622976.

    • Search Google Scholar
    • Export Citation
  • Tan, K. A., , and S. D. Eckermann, 2000: Numerical model simulations of mountain waves in the middle atmosphere over the southern Andes. Atmospheric Science across the Stratopause, Geophys. Monogr., Vol. 123, Amer. Geophys. Union, 311–318.

    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., 2000: Three-dimensional numerical simulations of strongly stratified flow past conical orography. J. Atmos. Sci., 57 , 37163739.

    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., , I. P. Castro, , W. H. Snyder, , and S. D. Mobbs, 1999: Experimental studies of strongly stratified flow past three-dimensional orography. J. Fluid Mech., 390 , 223249.

    • Search Google Scholar
    • Export Citation
  • Webster, S., , A. R. Brown, , D. R. Cameron, , and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129 , 19892010.

    • Search Google Scholar
    • Export Citation
  • Welch, W. T., , P. K. Smolarkiewicz, , R. Rotunno, , and B. A. Boville, 2001: The large-scale effects of flow over periodic mesoscale topography. J. Atmos. Sci., 58 , 14771492.

    • Search Google Scholar
    • Export Citation
  • Wells, H., , S. Webster, , and A. Brown, 2005: The effect of rotation on the pressure drag force produced by flow around long mountain ridges. Quart. J. Roy. Meteor. Soc., 131 , 13211338.

    • Search Google Scholar
    • Export Citation
  • Wells, H., , S. B. Vosper, , A. N. Ross, , A. R. Brown, , and S. Webster, 2008: Wind direction effects on orographic drag. Quart. J. Roy. Meteor. Soc., 134 , 689701.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 92 12
PDF Downloads 60 60 11

Momentum Fluxes of Gravity Waves Generated by Variable Froude Number Flow over Three-Dimensional Obstacles

View More View Less
  • 1 Space Science Division, Naval Research Laboratory, Washington, D.C
  • | 2 College of Science, George Mason University, Fairfax, Virginia
  • | 3 Computational Physics, Inc., Springfield, Virginia
  • | 4 College of Science, George Mason University, Fairfax, Virginia
© Get Permissions
Restricted access

Abstract

Fully nonlinear mesoscale model simulations are used to investigate the momentum fluxes of gravity waves that emerge at a “far-field” height of 6 km from steady unsheared flow over both an axisymmetric and elliptical obstacle for nondimensional mountain heights ĥm = Fr−1 in the range 0.1–5, where Fr is the surface Froude number. Fourier- and Hilbert-transform diagnostics of model output yield local estimates of phase-averaged momentum flux, while area integrals of momentum flux quantify the amount of surface pressure drag that translates into far-field gravity waves, referred to here as the “wave drag” component. Estimates of surface and wave drag are compared to parameterization predictions and theory. Surface dynamics transition from linear to high-drag (wave breaking) states at critical inverse Froude numbers Frc−1 predicted to within 10% by transform relations. Wave drag peaks at Frc−1 < ĥm ≲ 2, where for the elliptical obstacle both surface and wave drag vacillate owing to cyclical buildup and breakdown of waves. For the axisymmetric obstacle, this occurs only at ĥm = 1.2. At ĥm ≳ 2–3 vacillation abates and normalized pressure drag assumes a common normalized form for both obstacles that varies approximately as ĥm−1.3. Wave drag in this range asymptotes to a constant absolute value that, despite its theoretical shortcomings, is predicted to within 10%–40% by an analytical relation based on linear clipped-obstacle drag for a Sheppard-based prediction of dividing streamline height. Constant wave drag at ĥm ∼ 2–5 arises despite large variations with ĥm in the three-dimensional morphology of the local wave momentum fluxes. Specific implications of these results for the parameterization of subgrid-scale orographic drag in global climate and weather models are discussed.

Corresponding author address: Stephen Eckermann, Code 7646, Space Science Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375. Email: stephen.eckermann@nrl.navy.mil

Abstract

Fully nonlinear mesoscale model simulations are used to investigate the momentum fluxes of gravity waves that emerge at a “far-field” height of 6 km from steady unsheared flow over both an axisymmetric and elliptical obstacle for nondimensional mountain heights ĥm = Fr−1 in the range 0.1–5, where Fr is the surface Froude number. Fourier- and Hilbert-transform diagnostics of model output yield local estimates of phase-averaged momentum flux, while area integrals of momentum flux quantify the amount of surface pressure drag that translates into far-field gravity waves, referred to here as the “wave drag” component. Estimates of surface and wave drag are compared to parameterization predictions and theory. Surface dynamics transition from linear to high-drag (wave breaking) states at critical inverse Froude numbers Frc−1 predicted to within 10% by transform relations. Wave drag peaks at Frc−1 < ĥm ≲ 2, where for the elliptical obstacle both surface and wave drag vacillate owing to cyclical buildup and breakdown of waves. For the axisymmetric obstacle, this occurs only at ĥm = 1.2. At ĥm ≳ 2–3 vacillation abates and normalized pressure drag assumes a common normalized form for both obstacles that varies approximately as ĥm−1.3. Wave drag in this range asymptotes to a constant absolute value that, despite its theoretical shortcomings, is predicted to within 10%–40% by an analytical relation based on linear clipped-obstacle drag for a Sheppard-based prediction of dividing streamline height. Constant wave drag at ĥm ∼ 2–5 arises despite large variations with ĥm in the three-dimensional morphology of the local wave momentum fluxes. Specific implications of these results for the parameterization of subgrid-scale orographic drag in global climate and weather models are discussed.

Corresponding author address: Stephen Eckermann, Code 7646, Space Science Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375. Email: stephen.eckermann@nrl.navy.mil

Save