• Ambaum, M., , B. Hoskins, , and D. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation? J. Climate, 14 , 34953507.

  • Aoki, H., , M. Shiotani, , and I. Hirota, 1996: Interannual variability of the tropospheric circulation and its relation to the stratosphere in the Southern Hemisphere. J. Meteor. Soc. Japan, 74 , 509523.

    • Search Google Scholar
    • Export Citation
  • Bals-Elsholz, T. M., , E. H. Atallah, , L. F. Bosart, , T. A. Wasula, , M. J. Cempa, , and A. R. Lupo, 2001: The wintertime Southern Hemisphere split jet: Structure variability and evolution. J. Climate, 14 , 41914215.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., , and D. L. Hartmann, 2010: Dynamical feedbacks and the persistence of the NAO. J. Atmos. Sci., 67 , 851865.

  • Branstator, G., 1992: The maintenance of low-frequency atmospheric anomalies. J. Atmos. Sci., 49 , 19241946.

  • Codron, F., 2005: Relation between annular modes and the mean state: Southern Hemisphere summer. J. Climate, 18 , 320330.

  • Codron, F., 2007: Relations between annular modes and the mean state: Southern Hemisphere winter. J. Atmos. Sci., 64 , 33283339.

  • Cohen, J., , and K. Saito, 2002: A test for annular modes. J. Climate, 15 , 25372546.

  • Eichelberger, S. J., , and D. L. Hartmann, 2007: Zonal jet structure and the leading mode of variability. J. Climate, 20 , 51495163.

  • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129 , 901924.

  • Feldstein, S. B., , and S. Lee, 1998: Is the atmospheric zonal index driven by an eddy feedback? J. Atmos. Sci., 55 , 30773086.

  • Gerber, E. P., , and G. K. Vallis, 2007: Eddy–zonal flow interactions and the persistence of the zonal index. J. Atmos. Sci., 64 , 32963311.

    • Search Google Scholar
    • Export Citation
  • Hamming, R. W., 1989: Digital Filters. Prentice Hall, 284 pp.

  • Hartmann, D. L., 2007: The atmospheric general circulation and its variability. J. Meteor. Soc. Japan, 85B , 123143.

  • Hartmann, D. L., , and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55 , 13031315.

  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier, 535 pp.

  • Hoskins, B. J., , and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18 , 41084129.

  • Kidson, J. W., , and I. G. Watterson, 1999: The structure and predictability of the “high-latitude mode” in the CSIRO9 general circulation model. J. Atmos. Sci., 56 , 38593873.

    • Search Google Scholar
    • Export Citation
  • Lee, S., , and H-K. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60 , 14901503.

  • Lorenz, D. J., , and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58 , 33123327.

  • Lorenz, D. J., , and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16 , 12121227.

  • Nakamura, H., , and J. M. Wallace, 1990: Observed changes in baroclinic wave activity during the life cycles of low-frequency circulation anomalies. J. Atmos. Sci., 46 , 11001116.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., , and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17 , 18281844.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 1994: Eddy feedbacks on the zonal index and eddy–zonal flow interactions induced by zonal flow transience. J. Atmos. Sci., 51 , 25532562.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 1996: Does eddy feedback sustain variability in the zonal index? J. Atmos. Sci., 53 , 35563569.

  • Robinson, W. A., 2000: A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci., 57 , 415422.

  • Robinson, W. A., 2006: On the self-maintenance of midlatitude jets. J. Atmos. Sci., 63 , 21092122.

  • Sen Gupta, A., , and M. H. England, 2007: Coupled ocean–atmosphere feedback in the southern annular mode. J. Climate, 20 , 36773692.

  • Thompson, D. W., , and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., , and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Watterson, I. G., 2000: Southern midlatitude zonal wind vacillation and its interaction with the ocean in GCM simulations. J. Climate, 13 , 562578.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2002: Wave–mean flow feedback and the persistence of simulated zonal flow vacillation. J. Atmos. Sci., 59 , 12741288.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2007: Southern “annular modes” simulated by a climate model—Patterns, mechanisms, and uses. J. Atmos. Sci., 64 , 31133131.

    • Search Google Scholar
    • Export Citation
  • Williams, L. N., , S. Lee, , and S-W. Son, 2007: Dynamics of the Southern Hemisphere spiral jet. J. Atmos. Sci., 64 , 548563.

  • Yang, X., , and E. K. M. Chang, 2006: Variability of the Southern Hemisphere winter split flow—A case of two-way reinforcement between mean flow and eddy anomalies. J. Atmos. Sci., 63 , 634650.

    • Search Google Scholar
    • Export Citation
  • Yang, X., , and E. K. M. Chang, 2007: Eddy–zonal flow feedback in the Southern Hemisphere winter and summer. J. Atmos. Sci., 64 , 30913112.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 63 63 5
PDF Downloads 34 34 5

Dynamical Feedbacks of the Southern Annular Mode in Winter and Summer

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The persistence of the southern annular mode (SAM) is studied during austral winter (June–September) and summer (December–March) using observations of the three-dimensional vorticity budget. Analysis of the relative vorticity tendency equation shows that convergence of eddy vorticity flux in the upper troposphere, coupled with a secondary circulation, constitutes a positive eddy feedback that acts to sustain the vorticity anomaly associated with the jet shift against drag. The feedback exhibits a strong seasonality, with summer months revealing a positive feedback through much of the hemisphere and winter months showing a positive feedback over the Indian Ocean but not over the western Pacific. Results suggest that the lack of wintertime feedback over the western Pacific is due to the weakness of the eddy-driven midlatitude jet in that region.

Corresponding author address: Elizabeth A. Barnes, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. Email: eabarnes@atmos.washington.edu

Abstract

The persistence of the southern annular mode (SAM) is studied during austral winter (June–September) and summer (December–March) using observations of the three-dimensional vorticity budget. Analysis of the relative vorticity tendency equation shows that convergence of eddy vorticity flux in the upper troposphere, coupled with a secondary circulation, constitutes a positive eddy feedback that acts to sustain the vorticity anomaly associated with the jet shift against drag. The feedback exhibits a strong seasonality, with summer months revealing a positive feedback through much of the hemisphere and winter months showing a positive feedback over the Indian Ocean but not over the western Pacific. Results suggest that the lack of wintertime feedback over the western Pacific is due to the weakness of the eddy-driven midlatitude jet in that region.

Corresponding author address: Elizabeth A. Barnes, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. Email: eabarnes@atmos.washington.edu

Save