Ice Initiation by Aerosol Particles: Measured and Predicted Ice Nuclei Concentrations versus Measured Ice Crystal Concentrations in an Orographic Wave Cloud

T. Eidhammer National Center for Atmospheric Research, Boulder, Colorado
Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by T. Eidhammer in
Current site
Google Scholar
PubMed
Close
,
P. J. DeMott Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by P. J. DeMott in
Current site
Google Scholar
PubMed
Close
,
A. J. Prenni Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by A. J. Prenni in
Current site
Google Scholar
PubMed
Close
,
M. D. Petters Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by M. D. Petters in
Current site
Google Scholar
PubMed
Close
,
C. H. Twohy Department of Atmospheric and Oceanic Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by C. H. Twohy in
Current site
Google Scholar
PubMed
Close
,
D. C. Rogers National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by D. C. Rogers in
Current site
Google Scholar
PubMed
Close
,
J. Stith National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by J. Stith in
Current site
Google Scholar
PubMed
Close
,
A. Heymsfield National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by A. Heymsfield in
Current site
Google Scholar
PubMed
Close
,
Z. Wang Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Z. Wang in
Current site
Google Scholar
PubMed
Close
,
K. A. Pratt Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California

Search for other papers by K. A. Pratt in
Current site
Google Scholar
PubMed
Close
,
K. A. Prather Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California

Search for other papers by K. A. Prather in
Current site
Google Scholar
PubMed
Close
,
S. M. Murphy Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California

Search for other papers by S. M. Murphy in
Current site
Google Scholar
PubMed
Close
,
J. H. Seinfeld Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California

Search for other papers by J. H. Seinfeld in
Current site
Google Scholar
PubMed
Close
,
R. Subramanian Droplet Measurement Technologies, Boulder, Colorado

Search for other papers by R. Subramanian in
Current site
Google Scholar
PubMed
Close
, and
S. M. Kreidenweis National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by S. M. Kreidenweis in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The initiation of ice in an isolated orographic wave cloud was compared with expectations based on ice nucleating aerosol concentrations and with predictions from new ice nucleation parameterizations applied in a cloud parcel model. Measurements of ice crystal number concentrations were found to be in good agreement both with measured number concentrations of ice nuclei feeding the clouds and with ice nuclei number concentrations determined from the residual nuclei of cloud particles collected by a counterflow virtual impactor. Using lognormal distributions fitted to measured aerosol size distributions and measured aerosol chemical compositions, ice nuclei and ice crystal concentrations in the wave cloud were reasonably well predicted in a 1D parcel model framework. Two different empirical parameterizations were used in the parcel model: a parameterization based on aerosol chemical type and surface area and a parameterization that links ice nuclei number concentrations to the number concentrations of particles with diameters larger than 0.5 μm. This study shows that aerosol size distribution and composition measurements can be used to constrain ice initiation by primary nucleation in models. The data and model results also suggest the likelihood that the dust particle mode of the aerosol size distribution controls the number concentrations of the heterogeneous ice nuclei, at least for the lower temperatures examined in this case.

c Current affiliation: Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

g Current affiliation: Department of Chemistry, Purdue University, West Lafayette, Indiana

i Current affiliation: Chemical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Corresponding author address: Trude Eidhammer, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. Email: trude@ucar.edu

Abstract

The initiation of ice in an isolated orographic wave cloud was compared with expectations based on ice nucleating aerosol concentrations and with predictions from new ice nucleation parameterizations applied in a cloud parcel model. Measurements of ice crystal number concentrations were found to be in good agreement both with measured number concentrations of ice nuclei feeding the clouds and with ice nuclei number concentrations determined from the residual nuclei of cloud particles collected by a counterflow virtual impactor. Using lognormal distributions fitted to measured aerosol size distributions and measured aerosol chemical compositions, ice nuclei and ice crystal concentrations in the wave cloud were reasonably well predicted in a 1D parcel model framework. Two different empirical parameterizations were used in the parcel model: a parameterization based on aerosol chemical type and surface area and a parameterization that links ice nuclei number concentrations to the number concentrations of particles with diameters larger than 0.5 μm. This study shows that aerosol size distribution and composition measurements can be used to constrain ice initiation by primary nucleation in models. The data and model results also suggest the likelihood that the dust particle mode of the aerosol size distribution controls the number concentrations of the heterogeneous ice nuclei, at least for the lower temperatures examined in this case.

c Current affiliation: Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

g Current affiliation: Department of Chemistry, Purdue University, West Lafayette, Indiana

i Current affiliation: Chemical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Corresponding author address: Trude Eidhammer, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. Email: trude@ucar.edu

Save
  • Baker, B. A., and R. P. Lawson, 2006: In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part I: Wave clouds. J. Atmos. Sci., 63 , 31603185.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., R. Subramanian, C. Twohy, J. Stith, and G. Kok, 2008: Scavenging of black carbon by ice crystals over the northern Pacific. Geophys. Res. Lett., 35 , L22815. doi:10.1029/2008GL035764.

    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., O. Möhler, P. R. Field, H. Saathoff, R. Burgess, T. Choularton, and M. Gallagher, 2009: Studies of heterogeneous freezing by three different desert dust samples. Atmos. Chem. Phys., 9 , 28052824.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement: A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., and G. Vali, 1981: The origin of ice in mountain cap clouds. J. Atmos. Sci., 38 , 12441259.

  • Cotton, R. J., and P. R. Field, 2002: Ice nucleation characteristics of an isolated wave cloud. Quart. J. Roy. Meteor. Soc., 128 , 24172437.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., and S. Haimov, 2006: A high-resolution dual-Doppler technique for fixed multiantenna airborne radar. IEEE Trans. Geosci. Remote Sens., 44 , 34753489.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thomson, R. Borys, and D. C. Rogers, 2003: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100 , 1465514660.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107 , 1121711222.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., and S. Wurzler, 2004: Heterogeneous drop freezing in the immersion mode: Model calculations considering soluble and insoluble particles in the drops. J. Atmos. Sci., 61 , 20632072.

    • Search Google Scholar
    • Export Citation
  • Drewnick, F., and Coauthors, 2005: A new time-of-flight aerosol mass spectrometer (ToF-AMS): Instrument description and first field deployment. Aerosol Sci. Technol., 39 , 637658.

    • Search Google Scholar
    • Export Citation
  • Durant, A. J., and R. A. Shaw, 2005: Evaporation freezing by contact nucleation inside-out. Geophys. Res. Lett., 32 , L20814. doi:10.1029/2005GL024175.

    • Search Google Scholar
    • Export Citation
  • Dusek, U., G. P. Reischl, and R. Hitzenberger, 2006: CCN activation of pure and coated carbon black particles. Environ. Sci. Technol., 40 , 12231230.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., P. J. DeMott, and S. M. Kreidenweis, 2009: A comparison of heterogeneous ice nucleation parameterizations using a parcel model framework. J. Geophys. Res., 114 , D06202. doi:10.1029/2008JD011095.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and A. J. Heymsfield, 1992: Parameterizations of condensational growth of droplets for use in general circulation models. J. Atmos. Sci., 49 , 23252342.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2001: Ice nucleation in orographic wave clouds: Measurements made during INTACC. Quart. J. Roy. Meteor. Soc., 127 , 14931512.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. Wood, P. R. A. Brown, P. H. Kaye, E. Hirst, and R. Greenaway, 2003: Ice particle interarrival times measured with a fast FSSP. J. Atmos. Oceanic Technol., 20 , 249261.

    • Search Google Scholar
    • Export Citation
  • Fletcher, N. H., 1962: The Physics of Rainclouds. Cambridge University Press, 386 pp.

  • Fridlind, A. M., A. S. Ackerman, G. McFarquhar, G. Zhang, M. R. Poellot, P. J. DeMott, A. J. Prenni, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment (M-PACE): 2. Model results. J. Geophys. Res., 112 , D24202. doi:10.1029/2007JD008646.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249 , 2628.

  • Heymsfield, A. J., and L. M. Miloshevich, 1993: Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds. J. Atmos. Sci., 50 , 23352353.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., 1989: An instantaneous CCN spectrometer. J. Atmos. Oceanic Technol., 6 , 10551065.

  • Jensen, E. J., and Coauthors, 2009: On the importance of small ice crystals in tropical anvil cirrus. Atmos. Chem. Phys. Discuss., 9 , 53215370.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 2000: A new theory of heterogeneous ice nucleation for application in cloud and climate models. Geophys. Res. Lett., 27 , 40814084.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 2004: The theory of ice nucleation by heterogeneous freezing of deliquescent mixed CCN. Part I: Critical radius, energy, and nucleation rate. J. Atmos. Sci., 61 , 26762691.

    • Search Google Scholar
    • Export Citation
  • King, W. D., D. A. Parkin, and R. J. Handsworth, 1978: A hot-wire liquid water device having fully calculable response characteristics. J. Appl. Meteor., 17 , 18091813.

    • Search Google Scholar
    • Export Citation
  • Koehler, K. A., S. M. Kreidenweis, P. J. DeMott, A. J. Prenni, and M. D. Petters, 2007: Potential impact of Owens (dry) Lake dust on warm and cold cloud formation. J. Geophys. Res., 112 , D12210. doi:10.1029/2007JD008413.

    • Search Google Scholar
    • Export Citation
  • Leon, D., G. Vali, and M. Lothon, 2006: Dual-Doppler analysis in a single plane from an airborne platform. J. Atmos. Oceanic Technol., 23 , 322.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, M. Freer, D. Baumgardner, G. L. Kok, and G. Mace, 2007: Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34 , L13803. doi:10.1029/2007GL029865.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31 , 708721.

    • Search Google Scholar
    • Export Citation
  • Noone, K. J., J. A. Ogren, J. Heintzenberg, R. J. Charlson, and D. S. Covert, 1988: Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. Aerosp. Sci. Technol., 8 , 235244.

    • Search Google Scholar
    • Export Citation
  • Pazmany, A., R. McIntosh, R. Kelly, and G. Vali, 1994: An airborne 95-GHz dual-polarized radar for cloud studies. IEEE Trans. Geosci. Remote Sens., 32 , 731739.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7 , 19611971.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and Coauthors, 2009: Ice nuclei emissions from biomass burning. J. Geophys. Res., 114 , D07209. doi:10.1029/2008JD011532.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., P. J. DeMott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65 , 27572783.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2009a: Development and characterization of an aircraft aerosol time-of-flight mass spectrometer. Anal. Chem., 81 , 17921800.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2009b: In-situ detection of biological particles in cloud ice-crystals. Nat. Geosci., 2 , 398401. doi:10.1038/ngeo521.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2010: Observation of playa salts as nuclei in orographic wave clouds. J. Geophys. Res., 115 , D15301. doi:10.1029/2009JD013606.

    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., and Coauthors, 2007: Examinations of ice formation processes in Florida cumuli using ice nuclei measurements of anvil ice crystal particle residues. J. Geophys. Res., 112 , D10221. doi:10.1029/2006JD007549.

    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., M. D. Petters, A. Faulhaber, C. M. Carrico, P. J. Ziemann, S. M. Kreidenweis, and P. J. DeMott, 2009: Heterogeneous ice nucleation measurements of secondary organic aerosol generated from ozonolysis of alkenes. Geophys. Res. Lett., 36 , L06808. doi:10.1029/2008GL036957.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Richardson, M. S., and Coauthors, 2007: Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. J. Geophys. Res., 112 , D02209. doi:10.1029/2006JD007500.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., P. J. DeMott, S. M. Kreidenweis, and Y. L. Chen, 2001: A continuous-flow diffusion chamber for airborne measurements of ice nuclei. J. Atmos. Oceanic Technol., 18 , 725741.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and G. C. Dodd, 1989: Haze particle nucleation simulation in cirrus clouds and applications for numerical and lidar studies. J. Atmos. Sci., 46 , 30053014.

    • Search Google Scholar
    • Export Citation
  • Schwarz, J. P., and Coauthors, 2006: Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J. Geophys. Res., 111 , D16207. doi:10.1029/2006JD007076.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., A. J. Durant, and Y. Mi, 2005: Heterogeneous surface crystallization observed in undercooled water. J. Phys. Chem., 109B , 98659868.

    • Search Google Scholar
    • Export Citation
  • Snider, J. R., and M. D. Petters, 2008: Optical particle counter measurement of marine aerosol hygroscopic growth. Atmos. Chem. Phys., 8 , 19491962.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., A. J. Schanot, and W. A. Cooper, 1997: Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor. J. Atmos. Oceanic Technol., 14 , 197202.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and Coauthors, 2010: Relationships of biomass burning aerosol to ice in orographic wave clouds. J. Atmos. Sci., 67 , 24372450.

    • Search Google Scholar
    • Export Citation
  • Vali, G., 1985: Nucleation terminology. Bull. Amer. Meteor. Soc., 66 , 14261427.

  • Wang, Z., P. Wechler, W. Kuestner, J. French, A. Rodi, B. Glover, M. Burkhart, and D. Lukens, 2009: Wyoming Cloud Lidar: Instrument description and applications. Opt. Express, 17 , 1357613587.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1881 1046 338
PDF Downloads 540 112 23