Residual Circulation and Tropopause Structure

Thomas Birner Department of Physics, University of Toronto, Toronto, Ontario, Canada, and Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Thomas Birner in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The effect of large-scale dynamics as represented by the residual mean meridional circulation in the transformed Eulerian sense, in particular its stratospheric part, on lower stratospheric static stability and tropopause structure is studied using a comprehensive chemistry–climate model (CCM), reanalysis data, and simple idealized modeling. Dynamical forcing of static stability as associated with the vertical structure of the residual circulation results in a dominant dipole forcing structure with negative static stability forcing just below the tropopause and positive static stability forcing just above the tropopause. This dipole forcing structure effectively sharpens the tropopause, especially during winter. Furthermore, the strong positive lowermost stratospheric static stability forcing causes a layer of strongly enhanced static stability just above the extratropical tropopause—a tropopause inversion layer (TIL)—especially in the winter midlatitudes. The strong positive static stability forcing is shown to be mainly due to the strong vertical gradient of the vertical residual velocity found just above the tropopause in the winter midlatitudes.

Stratospheric radiative equilibrium (SRE) solutions are obtained using offline radiative transfer calculations for a given tropospheric climate as simulated by the CCM. The resulting tropopause height in SRE is reduced by several kilometers in the tropics but is increased by 1–2 km in the extratropics, strongly reducing the equator-to-pole contrast in tropopause height. Moreover, the TIL in winter midlatitudes disappears in the SRE solution in contrast to the polar summer TIL, which stays intact. When the SRE solution is modified to include the effect of stratospheric dynamics as represented by the stratospheric residual circulation, the TIL in winter midlatitudes is recovered, suggesting that the static stability forcing associated with the stratospheric residual circulation represents the main cause for the TIL in the winter midlatitudes whereas radiation seems dominant in causing the polar summer TIL.

Corresponding author address: Thomas Birner, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. Email: thomas@atmos.colostate.edu

Abstract

The effect of large-scale dynamics as represented by the residual mean meridional circulation in the transformed Eulerian sense, in particular its stratospheric part, on lower stratospheric static stability and tropopause structure is studied using a comprehensive chemistry–climate model (CCM), reanalysis data, and simple idealized modeling. Dynamical forcing of static stability as associated with the vertical structure of the residual circulation results in a dominant dipole forcing structure with negative static stability forcing just below the tropopause and positive static stability forcing just above the tropopause. This dipole forcing structure effectively sharpens the tropopause, especially during winter. Furthermore, the strong positive lowermost stratospheric static stability forcing causes a layer of strongly enhanced static stability just above the extratropical tropopause—a tropopause inversion layer (TIL)—especially in the winter midlatitudes. The strong positive static stability forcing is shown to be mainly due to the strong vertical gradient of the vertical residual velocity found just above the tropopause in the winter midlatitudes.

Stratospheric radiative equilibrium (SRE) solutions are obtained using offline radiative transfer calculations for a given tropospheric climate as simulated by the CCM. The resulting tropopause height in SRE is reduced by several kilometers in the tropics but is increased by 1–2 km in the extratropics, strongly reducing the equator-to-pole contrast in tropopause height. Moreover, the TIL in winter midlatitudes disappears in the SRE solution in contrast to the polar summer TIL, which stays intact. When the SRE solution is modified to include the effect of stratospheric dynamics as represented by the stratospheric residual circulation, the TIL in winter midlatitudes is recovered, suggesting that the static stability forcing associated with the stratospheric residual circulation represents the main cause for the TIL in the winter midlatitudes whereas radiation seems dominant in causing the polar summer TIL.

Corresponding author address: Thomas Birner, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. Email: thomas@atmos.colostate.edu

Save
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Beagley, S. R., J. de Grandpré, J. Koshyk, N. A. McFarlane, and T. G. Shepherd, 1997: Radiative–dynamical climatology of the first-generation Canadian Middle Atmosphere Model. Atmos.–Ocean, 35 , 293331.

    • Search Google Scholar
    • Export Citation
  • Bell, S. W., and M. A. Geller, 2008: Tropopause inversion layer: Seasonal and latitudinal variations and representation in standard radiosonde data and global models. J. Geophys. Res., 113 , D05109. doi:10.1029/2007JD009022.

    • Search Google Scholar
    • Export Citation
  • Bian, J., and H. Chen, 2008: Statistics of the tropopause inversion layer over Beijing. Adv. Atmos. Sci., 25 , 381386. doi:10.1007/s00376-008-0381-1.

    • Search Google Scholar
    • Export Citation
  • Birner, T., 2006: Fine-scale structure of the extratropical tropopause region. J. Geophys. Res., 111 , D04104. doi:10.1029/2005JD006301.

  • Birner, T., A. Dörnbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes? Geophys. Res. Lett., 29 , 1700. doi:10.1029/2002GL015142.

    • Search Google Scholar
    • Export Citation
  • Birner, T., D. Sankey, and T. G. Shepherd, 2006: The tropopause inversion layer in models and analyses. Geophys. Res. Lett., 33 , L14804. doi:10.1029/2006GL026549.

    • Search Google Scholar
    • Export Citation
  • Dell’Aquila, A., P. M. Ruti, and A. Sutera, 2007: Effects of the baroclinic adjustment on the tropopause in the NCEP–NCAR reanalysis. Climate Dyn., 28 , 325332. doi:10.1007/s00382-006-0199-4.

    • Search Google Scholar
    • Export Citation
  • Egger, J., 1995: Tropopause height in baroclinic channel flow. J. Atmos. Sci., 52 , 22322241.

  • Folkins, I., and R. V. Martin, 2005: The vertical structure of tropical convection and its impact on the budgets of water vapor and ozone. J. Atmos. Sci., 62 , 15601573.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63 , 25482566.

    • Search Google Scholar
    • Export Citation
  • Gabriel, A., G. Schmitz, and R. Geprägs, 1999: The tropopause in a 2D circulation model. J. Atmos. Sci., 56 , 40594068.

  • Gettelman, A., and T. Birner, 2007: Insights into tropical tropopause layer processes using global models. J. Geophys. Res., 112 , D23104. doi:10.1029/2007JD008945.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., D. W. J. Thompson, and T. Birner, 2010: A global survey of static stability in the stratosphere and upper troposphere. J. Climate, 23 , 22752292.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., J. Scinocca, and M. Greenslade, 2001: Formation and maintenance of the extratropical tropopause by baroclinic eddies. Geophys. Res. Lett., 28 , 41794182.

    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., and Coauthors, 2006: Measurements of NO, NOy, N2O, and O3 during SPURT: Implications for transport and chemistry in the lowermost stratosphere. Atmos. Chem. Phys., 6 , 13311350.

    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., C. D. Boone, G. L. Manney, and K. A. Walker, 2009: A global view of the extratropical tropopause transition layer from Atmospheric Chemistry Experiment Fourier Transform Spectrometer O3, H2O, and CO. J. Geophys. Res., 114 , D00B11. doi:10.1029/2008JD009984.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1982: On the height of the tropopause and the static stability of the troposphere. J. Atmos. Sci., 39 , 412417.

  • Held, I. M., and T. Schneider, 1999: The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci., 56 , 16881697.

    • Search Google Scholar
    • Export Citation
  • Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124 , 15791604.

  • Hoor, P., H. Fischer, L. Lange, J. Lelieveld, and D. Brunner, 2002: Seasonal variations of a mixing layer in the lowermost stratosphere as identified by the CO–O3 correlation from in situ measurements. J. Geophys. Res., 107 , 4044. doi:10.1029/2000JD000289.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., 1989: A diagnostic formulation for wave–mean flow interactions and Lagrangian-mean circulation with a hybrid vertical coordinate of pressure and isentropes. J. Meteor. Soc. Japan, 67 , 293312.

    • Search Google Scholar
    • Export Citation
  • Juckes, M., 2000: The static stability of the midlatitude troposphere: The relevance of moisture. J. Atmos. Sci., 57 , 30503057.

  • Juckes, M., 2001: A generalization of the transformed Eulerian mean meridional circulation. Quart. J. Roy. Meteor. Soc., 127 , 147160.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note NCAR/TN-420 + STR, 152 pp.

    • Search Google Scholar
    • Export Citation
  • Kirk-Davidoff, D. B., and R. S. Lindzen, 2000: An energy balance model based on potential vorticity homogenization. J. Climate, 13 , 431448.

    • Search Google Scholar
    • Export Citation
  • Kunz, A., P. Konopka, R. Müller, L. L. Pan, C. Schiller, and F. Rohrer, 2009: High static stability in the mixing layer above the extratropical tropopause. J. Geophys. Res., 114 , D16305. doi:10.1029/2009JD011840.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21 , 361385.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24 , 241259.

    • Search Google Scholar
    • Export Citation
  • Miyazaki, K., S. Watanabe, Y. Kawatani, Y. Tomikawa, M. Takahashi, and K. Sato, 2010: Transport and mixing in the extratropical tropopause region in a high-vertical-resolution GCM. Part I: Potential vorticity and heat budget analysis. J. Atmos. Sci., 67 , 12391314.

    • Search Google Scholar
    • Export Citation
  • Pan, L. L., S. Solomon, W. Randel, J-F. Lamarque, P. Hess, J. Gille, E-W. Chiou, and M. P. McCormick, 1997: Hemispheric asymmetries and seasonal variations of the lowermost stratospheric water vapor and ozone derived from SAGE II data. J. Geophys. Res., 102 , 2817728184.

    • Search Google Scholar
    • Export Citation
  • Pan, L. L., E. J. Hintsa, E. M. Stone, E. M. Weinstock, and W. J. Randel, 2000: The seasonal cycle of water vapor and saturation vapor mixing ratio in the extratropical lowermost stratosphere. J. Geophys. Res., 105 , 2651926530.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. R. Garcia, and F. Wu, 2002: Time-dependent upwelling in the tropical lower stratosphere estimated from the zonal-mean momentum budget. J. Atmos. Sci., 59 , 21412152.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., D. J. Seidel, and L. L. Pan, 2007a: Observational characteristics of double tropopauses. J. Geophys. Res., 112 , D07309. doi:10.1029/2006JD007904.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and P. Forster, 2007b: The extratropical tropopause inversion layer: Global observations with GPS data, and a radiative forcing mechanism. J. Atmos. Sci., 64 , 44894496.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., 1995: Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res., 100 , 51735191.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61 , 13171340.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2007: The thermal stratification of the extratropical troposphere. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 47–77.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. Plummer, 2008: Technical note: The CCCma third-generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8 , 70557074.

    • Search Google Scholar
    • Export Citation
  • Son, S-W., and L. M. Polvani, 2007: The dynamical formation of an extratropical tropopause inversion layer in a relatively simple general circulation model. Geophys. Res. Lett., 34 , L17806. doi:10.1029/2007GL030564.

    • Search Google Scholar
    • Export Citation
  • Son, S-W., S. Lee, and S. B. Feldstein, 2007: Intraseasonal variability of the zonal-mean extratropical tropopause height. J. Atmos. Sci., 64 , 608620.

    • Search Google Scholar
    • Export Citation
  • Son, S-W., and Coauthors, 2009: The impact of stratospheric ozone recovery on tropopause height trends. J. Climate, 22 , 429445.

  • Thuburn, J., and G. C. Craig, 1997: GCM tests of theories for the height of the tropopause. J. Atmos. Sci., 54 , 869882.

  • Thuburn, J., and G. C. Craig, 2000: Stratospheric influence on tropopause height: the radiative constraint. J. Atmos. Sci., 57 , 1728.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., and G. C. Craig, 2002: On the temperature structure of the tropical substratosphere. J. Geophys. Res., 107 , 4017. doi:10.1029/2001JD000448.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Wirth, V., 2003: Static stability in the extratropical tropopause region. J. Atmos. Sci., 60 , 13951409.

  • Wirth, V., 2004: A dynamical mechanism for tropopause sharpening. Meteor. Z., 13 , 477484.

  • Wirth, V., and T. Szabo, 2007: Sharpness of the extratropical tropopause in baroclinic life cycle experiments. Geophys. Res. Lett., 34 , L02809. doi:10.1029/2006GL028369.

    • Search Google Scholar
    • Export Citation
  • WMO, 1957: Meteorology—A three-dimensional science. WMO Bull., 6 , 134138.

  • Wong, S., and W-C. Wang, 2003: Tropical–extratropical connection in interannual variation of the tropopause: Comparison between NCEP/NCAR reanalysis and an atmospheric general circulation model simulation. J. Geophys. Res., 108 , 4043. doi:10.1029/2001JD002016.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2002: Dynamical heating in the polar lower stratosphere and its impact on the tropopause. J. Geophys. Res., 107 , 4079. doi:10.1029/2001JD000662.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., and V. Wirth, 2002: Synoptic-scale variability of the polar and subpolar tropopause: Data analysis and idealized PV inversions. Quart. J. Roy. Meteor. Soc., 128 , 23012315.

    • Search Google Scholar
    • Export Citation
  • Zhou, X. L., M. A. Geller, and M. H. Zhang, 2001: Tropical cold point tropopause characteristics derived from ECMWF reanalyses and soundings. J. Climate, 14 , 18231838.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1935 978 225
PDF Downloads 927 132 10