A Conceptual View on Inertial Oscillations and Nocturnal Low-Level Jets

B. J. H. Van de Wiel Meteorology and Air Quality, Wageningen University and Research Centre, Wageningen, and Turbulence and Vortex Dynamics, Department of Applied Physics, Eindhoven Technical University, Eindhoven, Netherlands

Search for other papers by B. J. H. Van de Wiel in
Current site
Google Scholar
PubMed
Close
,
A. F. Moene Meteorology and Air Quality, Wageningen University and Research Centre, Wageningen, Netherlands

Search for other papers by A. F. Moene in
Current site
Google Scholar
PubMed
Close
,
G. J. Steeneveld Meteorology and Air Quality, Wageningen University and Research Centre, Wageningen, Netherlands

Search for other papers by G. J. Steeneveld in
Current site
Google Scholar
PubMed
Close
,
P. Baas Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by P. Baas in
Current site
Google Scholar
PubMed
Close
,
F. C. Bosveld Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by F. C. Bosveld in
Current site
Google Scholar
PubMed
Close
, and
A. A. M. Holtslag Meteorology and Air Quality, Wageningen University and Research Centre, Wageningen, Netherlands

Search for other papers by A. A. M. Holtslag in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

In the present work Blackadar’s concept of nocturnal inertial oscillations is extended. Blackadar’s concept describes frictionless inertial oscillations above the nocturnal inversion layer. The current work includes frictional effects within the nocturnal boundary layer. It is shown that the nocturnal wind speed profile describes an oscillation around the nocturnal equilibrium wind vector, rather than around the geostrophic wind vector (as in the Blackadar case). By using this perspective, continuous time-dependent wind profiles are predicted. As such, information on both the height and the magnitude of the nocturnal low-level jet is available as a function of time. Preliminary analysis shows that the proposed extension performs well in comparison with observations when a simple Ekman model is used to represent the equilibrium state in combination with a realistic initial velocity profile.

In addition to jet dynamics, backward inertial oscillations are predicted at lower levels close to the surface, which also appear to be present in observations. The backward oscillation forms an important mechanism behind weakening low-level winds during the afternoon transition. Both observational and theoretical modeling studies are needed to explore this phenomenon further.

Corresponding author address: B. J. H. van de Wiel, Turbulence and Vortex Dynamics, Department of Applied Physics, Eindhoven Technical University, Postbus 513, Eindhoven, 5600 MB, Netherlands. Email: b.j.h.v.d.wiel@tue.nl

Abstract

In the present work Blackadar’s concept of nocturnal inertial oscillations is extended. Blackadar’s concept describes frictionless inertial oscillations above the nocturnal inversion layer. The current work includes frictional effects within the nocturnal boundary layer. It is shown that the nocturnal wind speed profile describes an oscillation around the nocturnal equilibrium wind vector, rather than around the geostrophic wind vector (as in the Blackadar case). By using this perspective, continuous time-dependent wind profiles are predicted. As such, information on both the height and the magnitude of the nocturnal low-level jet is available as a function of time. Preliminary analysis shows that the proposed extension performs well in comparison with observations when a simple Ekman model is used to represent the equilibrium state in combination with a realistic initial velocity profile.

In addition to jet dynamics, backward inertial oscillations are predicted at lower levels close to the surface, which also appear to be present in observations. The backward oscillation forms an important mechanism behind weakening low-level winds during the afternoon transition. Both observational and theoretical modeling studies are needed to explore this phenomenon further.

Corresponding author address: B. J. H. van de Wiel, Turbulence and Vortex Dynamics, Department of Applied Physics, Eindhoven Technical University, Postbus 513, Eindhoven, 5600 MB, Netherlands. Email: b.j.h.v.d.wiel@tue.nl

Save
  • Andreas, E. L., K. J. Claffey, and A. P. Makshtas, 2000: Low-level atmospheric jets and inversions over the western Weddell Sea. Bound.-Layer Meteor., 97 , 459486.

    • Search Google Scholar
    • Export Citation
  • Baas, P., F. C. Bosveld, H. Klein Baltink, and A. A. M. Holtslag, 2009: A climatology of nocturnal low-level jets at Cabauw. J. Appl. Meteor. Climatol., 48 , 16271642.

    • Search Google Scholar
    • Export Citation
  • Baas, P., F. C. Bosveld, G. Lenderink, E. Meijgaard, and A. A. M. Holtslag, 2010: How to design single-column model experiments for comparison with observed nocturnal low-level jets at Cabauw? Quart. J. Roy. Meteor. Soc., 136 , 671689. doi:10.1002/qj.592.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 2008: Stable boundary-layer regimes from the perspective of the low-level jet. Acta Geophys., 56 , 5887.

  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105 , 221252.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and R. K. Newsom, 2003: Relationship between the low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60 , 25492555.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and W. A. Brewer, 2006: Turbulent velocity variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63 , 27002719.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and F. C. Bosveld, 1997: Cabauw data for the validation of land surface parameterizations. J. Climate, 10 , 11721193.

    • Search Google Scholar
    • Export Citation
  • Beyrich, F., 1994: Sodar observations of the stable boundary layer height in relation to the nocturnal low-level jet. Meteor. Z., 3 , 2934.

    • Search Google Scholar
    • Export Citation
  • Beyrich, F., and B. Klose, 1987: Modellierung nächtlicher niedertroposphärischer Windmaxima. I: Theoretische Betrachtungen. Z. Meteor., 37 , 333347.

    • Search Google Scholar
    • Export Citation
  • Beyrich, F., and B. Klose, 1988: Some aspects of modelling low-level jets. Bound.-Layer Meteor., 43 , 114.

  • Beyrich, F., and B. Klose, 1990: Modellierung nächtlicher niedertroposphärischer Windmaxima. II: Modellverifikation. Z. Meteor., 40 , 3037.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38 , 283290.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., and H. Tennekes, 1968: Asymptotic similarity in neutral barotropic planetary boundary layers. J. Atmos. Sci., 25 , 10151020.

    • Search Google Scholar
    • Export Citation
  • Ekman, V. W., 1905: On the influence of the Earth’s rotation on ocean currents. Arkiv. Matematik. Astron. Fysik., 2 , 153.

  • Holtslag, A. A. M., and H. A. R. de Bruin, 1988: Applied modelling of the nighttime surface energy balance over land. Bound.-Layer Meteor., 27 , 689704.

    • Search Google Scholar
    • Export Citation
  • Liechti, F., and E. Schaller, 1999: The use of low-level jets by migrating birds. Naturwissenschaften, 86 , 549551.

  • Lundquist, J. K., 2003: Intermittent and elliptical inertial oscillations in the atmospheric boundary layer. J. Atmos. Sci., 60 , 26612673.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1981: The early evening boundary layer transition. Quart. J. Roy. Meteor. Soc., 107 , 329343.

  • Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn., 11 , 263279.

  • Mahrt, L., 2008: The influence of transient flow distortion on turbulence in stable weak-wind conditions. Bound.-Layer Meteor., 127 , 116.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and D. Vickers, 2002: Contrasting vertical structures of nocturnal boundary layers. Bound.-Layer Meteor., 105 , 351363.

  • McNider, R. T., M. D. Moran, and R. A. Pielke, 1988: Influence of diurnal and inertial boundary-layer oscillations on long range dispersion. Atmos. Environ., 22 , 24452462.

    • Search Google Scholar
    • Export Citation
  • Newsome, R. K., and R. W. Banta, 2003: Shear-flow instability in the stable boundary layer as observed by Doppler lidar during CASES-99. J. Atmos. Sci., 60 , 1633.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1981: The steady-state height and resistance laws of the nocturnal boundary layer: Theory compared with Cabauw observations. Bound.-Layer Meteor., 20 , 317.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1985: A model for the stationary, stable boundary layer. Turbulence and Diffusion in Stable Environments, J. C. R. Hunt, Ed., Clarendon, 149–179.

    • Search Google Scholar
    • Export Citation
  • Ohya, Y., R. Nakamura, and T. Uchida, 2008: Intermittent bursting of turbulence in a stable boundary layer with low-level jet. Bound.-Layer Meteor., 126 , 349363.

    • Search Google Scholar
    • Export Citation
  • Ostdiek, V., and W. Blumen, 1997: A dynamic trio: Inertial oscillation, deformation frontogenesis, and the Ekman–Taylor boundary layer. J. Atmos. Sci., 54 , 14901502.

    • Search Google Scholar
    • Export Citation
  • ReVelle, D. O., and E. D. Nilsson, 2008: Summertime low-level jets, over the high-latitude Arctic Ocean. J. Appl. Meteor. Climatol., 47 , 17701784.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and E. Fedorovich, 2009: Nocturnal low-level jet over a shallow slope. Acta Geophys., 57 , 950980.

  • Shapiro, A., and E. Fedorovich, 2010: Analytical description of a nocturnal low-level jet. Quart. J. Roy. Meteor. Soc., 136 , 12551262.

    • Search Google Scholar
    • Export Citation
  • Singh, M. P., R. T. McNider, and J. T. Lin, 1993: An analytical study of diurnal wind-structure variations in the boundary layer and the low-level nocturnal jet. Bound.-Layer Meteor., 63 , 397423.

    • Search Google Scholar
    • Export Citation
  • Storm, B., J. Dudhia, S. Basu, A. Swift, and I. Giammanco, 2009: Evaluation of the Weather Research and Forecasting model on forecasting low-level jets: Implication for wind energy. Wind Energy, 12 , 8190.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer, 670 pp.

  • Sun, J., and Coauthors, 2004: Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound.-Layer Meteor., 110 , 255279.

    • Search Google Scholar
    • Export Citation
  • Svensson, G., and A. A. M. Holtslag, 2009: Analysis of model results for the turning of the winds and the related momentum fluxes in the stable boundary layer. Bound.-Layer Meteor., 132 , 261277.

    • Search Google Scholar
    • Export Citation
  • Tan, Z-M., and M. M. Farahani, 1998: An analytical study of the diurnal variations of wind in a semi-geostrophic Ekman boundary layer model. Bound.-Layer Meteor., 86 , 313332.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., and T. H. Guymer, 1977: The nocturnal jet. Quart. J. Roy. Meteor. Soc., 103 , 633653.

  • Van Delden, A. J., 1993: Observational evidence of the wave-like character of the sea breeze effect. Beitr. Phys. Atmos., 66 , 6372.

  • Van de Wiel, B. J. H., A. F. Moene, O. K. Hartogensis, H. A. R. De Bruin, and A. A. M. Holtslag, 2003: Intermittent turbulence in the stable boundary layer over land. Part III: A classification for observations during CASES-99. J. Atmos. Sci., 60 , 25092522.

    • Search Google Scholar
    • Export Citation
  • Van Ulden, A. P., and J. Wieringa, 1996: Atmospheric boundary layer research at Cabauw. Bound.-Layer Meteor., 78 , 3969.

  • Weil, J. C., E. G. Patton, and P. P. Sullivan, 2006: Lagrangian modeling of dispersion in the stable boundary layer. Extended Abstracts, 17th Symp. on Boundary Layers and Turbulence, San Diego, CA, Amer. Meteor. Soc., J3.4. [Available online at http://ams.confex.com/ams/pdfpapers/111205.pdf].

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. C., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the Southern Great Plains. J. Appl. Meteor., 36 , 13631376.

    • Search Google Scholar
    • Export Citation
  • Wittich, K. P., J. Hartmann, and R. Roth, 1986: On nocturnal wind shear with a view to engineering applications. Bound.-Layer Meteor., 37 , 215227.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1972: On the determination of the height of the Ekman boundary layer. Bound.-Layer Meteor., 3 , 141145.

  • Zilitinkevich, S. S., 1975: Resistance laws and prediction equations for the depth of the planetary boundary layer. J. Atmos. Sci., 32 , 741752.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., and I. N. Esau, 2005: Resistance and heat-transfer laws for stable and neutral planetary boundary layers: Old theory advanced and re-evaluated. Quart. J. Roy. Meteor. Soc., 131 , 18631892.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2509 1118 198
PDF Downloads 1773 474 40