Relationships of Biomass-Burning Aerosols to Ice in Orographic Wave Clouds

Cynthia H. Twohy Oregon State University, Corvallis, Oregon

Search for other papers by Cynthia H. Twohy in
Current site
Google Scholar
PubMed
Close
,
Paul J. DeMott Colorado State University, Fort Collins, Colorado

Search for other papers by Paul J. DeMott in
Current site
Google Scholar
PubMed
Close
,
Kerri A. Pratt University of San Diego, La Jolla, California

Search for other papers by Kerri A. Pratt in
Current site
Google Scholar
PubMed
Close
,
R. Subramanian Droplet Measurement Technologies, Boulder, Colorado

Search for other papers by R. Subramanian in
Current site
Google Scholar
PubMed
Close
,
Gregory L. Kok Droplet Measurement Technologies, Boulder, Colorado

Search for other papers by Gregory L. Kok in
Current site
Google Scholar
PubMed
Close
,
Shane M. Murphy California Institute of Technology, Pasadena, California

Search for other papers by Shane M. Murphy in
Current site
Google Scholar
PubMed
Close
,
Traci Lersch * RJ Lee Group, Monroeville, Pennsylvania

Search for other papers by Traci Lersch in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Heymsfield National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew J. Heymsfield in
Current site
Google Scholar
PubMed
Close
,
Zhien Wang University of Wyoming, Laramie, Wyoming

Search for other papers by Zhien Wang in
Current site
Google Scholar
PubMed
Close
,
Kim A. Prather University of San Diego, La Jolla, California

Search for other papers by Kim A. Prather in
Current site
Google Scholar
PubMed
Close
, and
John H. Seinfeld California Institute of Technology, Pasadena, California

Search for other papers by John H. Seinfeld in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ice concentrations in orographic wave clouds at temperatures between −24° and −29°C were shown to be related to aerosol characteristics in nearby clear air during five research flights over the Rocky Mountains. When clouds with influence from colder temperatures were excluded from the dataset, mean ice nuclei and cloud ice number concentrations were very low, on the order of 1–5 L−1. In this environment, ice number concentrations were found to be significantly correlated with the number concentration of larger particles, those larger than both 0.1- and 0.5-μm diameter. A variety of complementary techniques was used to measure aerosol size distributions and chemical composition. Strong correlations were also observed between ice concentrations and the number concentrations of soot and biomass-burning aerosols. Ice nuclei concentrations directly measured in biomass-burning plumes were the highest detected during the project. Taken together, this evidence indicates a potential role for biomass-burning aerosols in ice formation, particularly in regions with relatively low concentrations of other ice nucleating aerosols.

Corresponding author address: Cynthia Twohy, College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97128. Email: twohy@coas.oregonstate.edu

Abstract

Ice concentrations in orographic wave clouds at temperatures between −24° and −29°C were shown to be related to aerosol characteristics in nearby clear air during five research flights over the Rocky Mountains. When clouds with influence from colder temperatures were excluded from the dataset, mean ice nuclei and cloud ice number concentrations were very low, on the order of 1–5 L−1. In this environment, ice number concentrations were found to be significantly correlated with the number concentration of larger particles, those larger than both 0.1- and 0.5-μm diameter. A variety of complementary techniques was used to measure aerosol size distributions and chemical composition. Strong correlations were also observed between ice concentrations and the number concentrations of soot and biomass-burning aerosols. Ice nuclei concentrations directly measured in biomass-burning plumes were the highest detected during the project. Taken together, this evidence indicates a potential role for biomass-burning aerosols in ice formation, particularly in regions with relatively low concentrations of other ice nucleating aerosols.

Corresponding author address: Cynthia Twohy, College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97128. Email: twohy@coas.oregonstate.edu

Save
  • Andreae, M. O., and A. Gelencsér, 2006: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys., 6 , 31313148.

    • Search Google Scholar
    • Export Citation
  • Baker, B. A., and R. P. Lawson, 2006: In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part 1: Wave clouds. J. Atmos. Sci., 63 , 31603185.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., R. Subramanian, C. Twohy, J. Stith, and G. Kok, 2008: Scavenging of black carbon by ice crystals over the northern Pacific. Geophys. Res. Lett., 35 , L22815. doi:10.1029/2008GL035764.

    • Search Google Scholar
    • Export Citation
  • Bowers, R. M., C. L. Lauber, C. Wiedinmyer, M. Hamady, A. G. Hallar, R. Fall, R. Knight, and N. Fierer, 2009: Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl. Environ. Microbiol., 75 , 51215130. doi:10.1128/AEM.00447-09.

    • Search Google Scholar
    • Export Citation
  • Cantrell, W., and A. Heymsfield, 2005: Production of ice in tropospheric clouds: A review. Bull. Amer. Meteor. Soc., 86 , 795807.

  • Chen, Y., S. M. Kreidenweis, L. M. McInnes, D. C. Rogers, and P. J. DeMott, 1998: Single particle analyses of ice nucleating aerosols in the upper troposphere and lower stratosphere. Geophys. Res. Lett., 25 , 13911394.

    • Search Google Scholar
    • Export Citation
  • Chýlek, P., and Coauthors, 1996: Black carbon: Atmospheric concentrations and cloud water content measurements over southern Nova Scotia. J. Geophys. Res., 101 , 2910529110.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1974: A possible mechanism for contact nucleation. J. Atmos. Sci., 31 , 18321837.

  • Cooper, W. A., and G. Vali, 1981: The origin of ice in mountain cap clouds. J. Atmos. Sci., 38 , 12441259.

  • Cozic, J., S. Mertes, B. Verheggen, D. J. Cziczo, S. J. Gallavardin, S. Walter, U. Baltensperger, and E. Weingartner, 2008: Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds. J. Geophys. Res., 113 , D15209. doi:10.1029/2007JD009266.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., and Coauthors, 2009: Inadvertent climate modification due to anthropogenic lead. Nat. Geosci., 2 , 333336. doi:10.1038/ngeo499; Corrigendum 2, 44.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 1990: An exploratory study of ice nucleation by soot aerosols. J. Appl. Meteor., 29 , 10721079.

  • DeMott, P. J., Y. Chen, S. M. Kreidenweis, D. C. Rogers, and D. E. Sherman, 1999: Ice formation by black carbon particles. Geophys. Res. Lett., 26 , 24292432.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Advances toward predicting global ice nuclei distributions. Proc. Natl. Acad. Sci. USA, 107 , 1121711222.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., and S. K. Mitra, 1998: A laboratory study of the effects of a kerosene-burner exhaust on ice nucleation and the evaporation rate of ice crystals. Atmos. Environ., 32 , 31453151.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., M. Simmel, and S. Wurzler, 2007: Effects of drop freezing on microphysics of an ascending cloud parcel under biomass burning conditions. Atmos. Environ., 41 , 303314.

    • Search Google Scholar
    • Export Citation
  • Durant, A. J., and R. A. Shaw, 2005: Evaporation freezing by contact nucleation inside-out. Geophys. Res. Lett., 32 , L20814. doi:10.1029/2005GL024175.

    • Search Google Scholar
    • Export Citation
  • Dymarska, M., B. J. Murray, L. Sun, M. L. Eastwood, D. A. Knopf, and A. K. Bertram, 2006: Deposition ice nucleation on soot at temperatures relevant for the lower troposphere. J. Geophys. Res., 111 , D04204. doi:10.1029/2005JD006627.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., and Coauthors, 2010: Ice initiation by aerosol particles: Measured and predicted ice nuclei concentrations versus measured ice crystal concentrations in an orographic wave cloud. J. Atmos. Sci., 67 , 24172436.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., O. Mohler, P. Connolly, M. Kramer, R. Cotton, A. J. Heymsfield, H. Saathoff, and M. Schnaiter, 2006: Some ice nucleation characteristics of Asian and Saharan desert dust. Atmos. Chem. Phys., 6 , 15091537.

    • Search Google Scholar
    • Export Citation
  • Gierens, K., 2003: On the transition between heterogeneous and homogeneous freezing. Atmos. Chem. Phys., 3 , 437446.

  • Gorbunov, B., A. Baklanov, N. Kakutkina, H. L. Windsor, and R. Tuomi, 2001: Ice nucleation on soot particles. J. Aerosol Sci., 32 , 199215.

    • Search Google Scholar
    • Export Citation
  • Gross, D. C., E. L. Proebsting, and H. Maccrindle-Zimmerman, 1988: Development, distribution, and characteristics of intrinsic, nonbacterial ice nuclei in Prunus wood. Plant Physiol., 88 , 915922.

    • Search Google Scholar
    • Export Citation
  • Haag, W., and B. Kärcher, 2004: The impact of aerosols and gravity waves on cirrus clouds at midlatitudes. J. Geophys. Res., 109 , D12202. doi:10.1029/2004JD004579.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249 , 2628.

  • Heymsfield, A. J., and L. M. Miloshevich, 1995: Relative humidity and temperature influences on cirrus formation and evolution: Observations from wave clouds and FIRE II. J. Atmos. Sci., 52 , 43024326.

    • Search Google Scholar
    • Export Citation
  • Hofmann, D. J., R. S. Stone, M. E. Wood, T. Deshler, and J. M. Harris, 1998: An analysis of 25 years of balloonborne aerosol data in search of a signature of the subsonic commercial aircraft fleet. Geophys. Res. Lett., 25 , 24332436.

    • Search Google Scholar
    • Export Citation
  • Hudson, P. K., and Coauthors, 2004: Biomass-burning particle measurements: Characteristic composition and chemical processing. J. Geophys. Res., 109 , D23S27. doi:10.1029/2003JD004398.

    • Search Google Scholar
    • Export Citation
  • Isono, K., M. Komabayasi, and A. Ono, 1959: The nature and origin of ice nuclei in the atmosphere. J. Meteor. Soc. Japan, 37 , 211233.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 2001: Prevalence of ice supersaturated regions in the upper troposphere: Implications for optically thin ice cloud formation. J. Geophys. Res., 106 , 1725317266.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., O. Mohler, P. J. DeMott, S. Pechtl, and F. Yu, 2007: Insights into the role of soot aerosols in cirrus cloud formation. Atmos. Chem. Phys., 7 , 42034227.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2005: Shattering during sampling by OAPs and HVPS. Part I: Snow particles. J. Atmos. Oceanic Technol., 22 , 528542.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, and G. A. Isaac, 1998: Evaluation of the accuracy of PMS optical array probes. J. Atmos. Oceanic Technol., 15 , 708720.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. Demott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31 , 708721.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2005: Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles. J. Geophys. Res., 110 , D11210. doi:10.1029/2004JD005169.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., P. J. DeMott, G. Vali, and Z. Levin, 2007: Microbiology and atmospheric processes: The role of biological particles in cloud physics. Biogeosciences, 4 , 10591071.

    • Search Google Scholar
    • Export Citation
  • Mossop, S., 1976: Production of secondary ice particles during the growth of graupel by riming. Quart. J. Roy. Meteor. Soc., 102 , 4557.

    • Search Google Scholar
    • Export Citation
  • Murphy, S. M., and Coauthors, 2009: Comprehensive simultaneous shipboard and airborne characterization of exhaust from a modern container ship at sea. Environ. Sci. Technol., 43 , 46264640.

    • Search Google Scholar
    • Export Citation
  • Noone, K. J., J. A. Ogren, and R. J. Charlson, 1988: Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. Aerosol Sci. Technol., 8 , 235244.

    • Search Google Scholar
    • Export Citation
  • Oraltay, R. G., and J. Hallett, 1989: Evaporation and melting of ice crystals: A laboratory study. Atmos. Res., 24 , 169189.

  • Petters, M. D., and Coauthors, 2009: Ice nuclei emissions from biomass burning. J. Geophys. Res., 114 , D07209. doi:10.1029/2008JD011532.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T., P. J. DeMott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65 , 27572783.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and K. A. Prather, 2010: Aircraft measurements of vertical profiles of aerosol mixing states. J. Geophys. Res., 115 , D11305. doi:10.1029/2009JD013150.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2009a: In-situ detection of biological particles in high altitude dust-influenced ice clouds. Nat. Geosci., 2 , 398401. doi:10.1038/ngeo521.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2009b: Development and characterization of an aircraft aerosol time-of-flight mass spectrometer. Anal. Chem., 81 , 17921800.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2010a: Observation of playa salts as nuclei in orographic wave clouds. J. Geophys. Res., 115 , D15301. doi:10.1029/2009JD013606.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2010b: In-situ chemical characterization of aged biomass burning aerosols impacting cold wave clouds. J. Atmos. Sci., 67 , 24512468.

    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., M. D. Petters, A. Faulhaber, C. M. Carrico, P. J. Ziemann, S. M. Kreidenweis, and P. J. DeMott, 2009: Heterogeneous ice nucleation measurements of secondary organic aerosol generated from ozonolysis of alkenes. Geophys. Res. Lett., 36 , L06808. doi:10.1029/2008GL036957.

    • Search Google Scholar
    • Export Citation
  • Rader, D. J., and V. A. Marple, 1985: Effect of ultra-Stokesian drag and particle interception on impaction characteristics. Aerosol Sci. Technol., 4 , 141156.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351 , 2732.

    • Search Google Scholar
    • Export Citation
  • Reid, J. S., R. Koppmann, T. F. Eck, and D. P. Eleuterio, 2005: A review of biomass burning emissions. Part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys., 5 , 799825.

    • Search Google Scholar
    • Export Citation
  • Richardson, M. S., and Coauthors, 2007: Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. J. Geophys. Res., 112 , D02209. doi:10.1029/2006JD007500.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., and G. Vali, 1987: Ice crystal production by mountain surfaces. J. Climate Appl. Meteor., 26 , 11521168.

  • Rogers, D. C., P. J. DeMott, S. M. Kreidenweis, and Y. Chen, 2001: A continuous-flow diffusion chamber for airborne measurements of ice nuclei. J. Atmos. Oceanic Technol., 18 , 725741.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and V. I. Khvorostyanov, 2008: Cloud effects from boreal forest fire smoke: Evidence for ice nucleation from polarization lidar data and cloud model simulations. Environ. Res. Lett., 3 , 025006. doi:10.1088/1748-9326/3/2/025006.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., P. J. DeMott, J. M. Prospero, and M. R. Poellot, 2003: Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results. Geophys. Res. Lett., 30 , 1633. doi:10.1029/2003GL017371.

    • Search Google Scholar
    • Export Citation
  • Schnell, R. C., and G. Vali, 1972: Atmospheric ice nuclei from decomposing vegetation. Nature, 236 , 163165. doi:10.1038/236163a0.

  • Schwarz, J. P., and Coauthors, 2006: Single-particle measurements of mid latitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J. Geophys. Res., 111 , D16207. doi:10.1029/2006JD007076.

    • Search Google Scholar
    • Export Citation
  • Schwarz, J. P., and Coauthors, 2009: Heating rates and surface dimming due to black carbon aerosol absorption associated with a major U.S. city. Geophys. Res. Lett., 36 , L15807. doi:10.1029/2009GL039213.

    • Search Google Scholar
    • Export Citation
  • Silva, P. J., D-Y. Liu, C. A. Noble, and K. A. Prather, 1999: Size and chemical characterization of individual particles resulting from biomass burning of local Southern California species. Environ. Sci. Technol., 33 , 30683076.

    • Search Google Scholar
    • Export Citation
  • Spencer, M. T., and K. A. Prather, 2006: Using ATOFMS to determine OC/EC mass fractions in particles. Aerosol Sci. Technol., 40 , 585594.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., and Coauthors, 2009: An overview of aircraft observations from the Pacific Dust Experiment campaign. J. Geophys. Res., 114 , D05207. doi:10.1029/2008JD010924.

    • Search Google Scholar
    • Export Citation
  • Tabazadeh, A., E. J. Jensen, and O. B. Toon, 1997: A model description for cirrus cloud nucleation from homogeneous freezing of sulfuric acid aerosols. J. Geophys. Res., 102 , 2384523850.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., 1991: Airborne condensation nucleus counter user’s guide. NCAR Tech. Note TN-356+EDD, 21 pp.

  • Twohy, C. H., and M. R. Poellot, 2005: Chemical characteristics of ice residual nuclei in anvil cirrus clouds: Evidence for homogeneous and heterogeneous ice formation. Atmos. Chem. Phys., 5 , 22892297.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and J. R. Anderson, 2008: Droplet nuclei in non-precipitating clouds: Composition and size matter. Environ. Res. Lett., 3 , 045002. doi:10.1088/1748-9326/3/4/045002.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., A. D. Clarke, S. G. Warren, L. F. Radke, and R. J. Charlson, 1989: Light-absorbing material extracted from cloud droplets and its effect on cloud albedo. J. Geophys. Res., 94 , 86238631.

    • Search Google Scholar
    • Export Citation
  • Vardiman, L., 1978: The generation of secondary ice particles in clouds by crystal–crystal collision. J. Atmos. Sci., 35 , 21682180.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 1977: Atmospheric Science: An Introductory Survey. Academic Press, 467 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 544 132 14
PDF Downloads 225 67 7