Saturn’s Northern Hemisphere Ribbon: Simulations and Comparison with the Meandering Gulf Stream

Kunio M. Sayanagi Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

Search for other papers by Kunio M. Sayanagi in
Current site
Google Scholar
PubMed
Close
,
Raúl Morales-Juberías Department of Physics, New Mexico Institute of Mining and Technology, Socorro, New Mexico

Search for other papers by Raúl Morales-Juberías in
Current site
Google Scholar
PubMed
Close
, and
Andrew P. Ingersoll Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

Search for other papers by Andrew P. Ingersoll in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Voyager observations of Saturn in 1980–81 discovered a wavy feature engirdling the planet at 47°N planetographic latitude. Its latitude coincides with that of an eastward jet stream, which is the second fastest on Saturn after the equatorial jet. The 47°N jet’s wavy morphology is unique among the known atmospheric jets on the gas giant planets. Since the Voyagers, it has been seen in every high-resolution image of this latitude for over 25 years and has been termed the Ribbon. The Ribbon has been interpreted as a dynamic instability in the jet stream. This study tests this interpretation and uses forward modeling to explore the observed zonal wind profile’s stability properties. Unforced, initial-value numerical experiments are performed to examine the nonlinear evolution of the jet stream. Parameter variations show that an instability occurs when the 47°N jet causes reversals in the potential vorticity (PV) gradient, which constitutes a violation of the Charney–Stern stability criterion. After the initial instability development, the simulations demonstrate that the instability’s amplitude nonlinearly saturates to a constant when the eddy generation by the instability is balanced by the destruction of the eddies. When the instability saturates, the zonal wind profile approaches neutral stability according to Arnol’d’s second criterion, and the jet’s path meanders in a Ribbon-like manner. It is demonstrated that the meandering of the 47°N jet occurs over a range of tropospheric static stability and background wind speed. The results here show that a nonlinearly saturated shear instability in the 47°N jet is a viable mechanism to produce the Ribbon morphology. Observations do not yet have the temporal coverage to confirm the creation and destruction of eddies, but these simulations predict that this is actively occurring in the Ribbon region. Similarities exist between the behaviors found in this model and the dynamics of PV fronts studied in the context of meandering western boundary currents in Earth’s oceans. In addition, the simulations capture the nonlinear aspects of a new feature discovered by the Cassini Visual and Infrared Mapping Spectrometer (VIMS), the String of Pearls, which resides in the equatorward tip of the 47°N jet. The Explicit Planetary Isentropic Coordinate (EPIC) model is used herein.

Corresponding author address: Kunio M. Sayanagi, MC 150-21, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125. Email: sayanagi@gps.caltech.edu

Abstract

Voyager observations of Saturn in 1980–81 discovered a wavy feature engirdling the planet at 47°N planetographic latitude. Its latitude coincides with that of an eastward jet stream, which is the second fastest on Saturn after the equatorial jet. The 47°N jet’s wavy morphology is unique among the known atmospheric jets on the gas giant planets. Since the Voyagers, it has been seen in every high-resolution image of this latitude for over 25 years and has been termed the Ribbon. The Ribbon has been interpreted as a dynamic instability in the jet stream. This study tests this interpretation and uses forward modeling to explore the observed zonal wind profile’s stability properties. Unforced, initial-value numerical experiments are performed to examine the nonlinear evolution of the jet stream. Parameter variations show that an instability occurs when the 47°N jet causes reversals in the potential vorticity (PV) gradient, which constitutes a violation of the Charney–Stern stability criterion. After the initial instability development, the simulations demonstrate that the instability’s amplitude nonlinearly saturates to a constant when the eddy generation by the instability is balanced by the destruction of the eddies. When the instability saturates, the zonal wind profile approaches neutral stability according to Arnol’d’s second criterion, and the jet’s path meanders in a Ribbon-like manner. It is demonstrated that the meandering of the 47°N jet occurs over a range of tropospheric static stability and background wind speed. The results here show that a nonlinearly saturated shear instability in the 47°N jet is a viable mechanism to produce the Ribbon morphology. Observations do not yet have the temporal coverage to confirm the creation and destruction of eddies, but these simulations predict that this is actively occurring in the Ribbon region. Similarities exist between the behaviors found in this model and the dynamics of PV fronts studied in the context of meandering western boundary currents in Earth’s oceans. In addition, the simulations capture the nonlinear aspects of a new feature discovered by the Cassini Visual and Infrared Mapping Spectrometer (VIMS), the String of Pearls, which resides in the equatorward tip of the 47°N jet. The Explicit Planetary Isentropic Coordinate (EPIC) model is used herein.

Corresponding author address: Kunio M. Sayanagi, MC 150-21, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125. Email: sayanagi@gps.caltech.edu

Save
  • Allen, J. S., L. J. Walstad, and P. A. Newberger, 1991: Dynamics of the coastal transition zone jet. 2. Nonlinear finite amplitude behavior. J. Geophys. Res., 96 , 1499515016.

    • Search Google Scholar
    • Export Citation
  • Arnol’d, V. I., 1966: On an a priori estimate in the theory of hydrodynamic stability (in Russian). Izv Vyssh. Uchebn. Zaved Matematika, 54 , 35.

    • Search Google Scholar
    • Export Citation
  • Arnol’d, V. I., 1969: On an a priori estimate in the theory of hydrodynamic stability (in English). Amer. Math. Soc. Transl. Ser., 2 , 267269.

    • Search Google Scholar
    • Export Citation
  • Boss, E., and L. Thompson, 1999: Mean flow evolution of a baroclinically unstable potential vorticity front. J. Phys. Oceanogr., 29 , 273287.

    • Search Google Scholar
    • Export Citation
  • Boss, E., N. Paldor, and L. Thompson, 1996: Stability of a potential vorticity front: From quasi-geostrophy to shallow water. J. Fluid Mech., 315 , 6584.

    • Search Google Scholar
    • Export Citation
  • Choi, D. S., A. P. Showman, and R. H. Brown, 2009: Cloud features and zonal wind measurements of Saturn’s atmosphere as observed by Cassini/VIMS. J. Geophys. Res., 114 , E04007. doi:10.1029/2008JE003254.

    • Search Google Scholar
    • Export Citation
  • Cornillon, P., T. Lee, and G. Fall, 1994: On the probability that a Gulf Stream meander crest detaches to form a warm core ring. J. Phys. Oceanogr., 24 , 159171.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., L. Pratt, and E. Ralph, 1993: A general theory for equivalent barotropic thin jets. J. Phys. Oceanogr., 23 , 91103.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., J. M. Barbara, J. Ferrier, A. P. Ingersoll, R. A. West, A. R. Vasavada, J. Spitale, and C. C. Porco, 2007: Saturn eddy momentum fluxes and convection: First estimates from Cassini images. Icarus, 189 , 479492.

    • Search Google Scholar
    • Export Citation
  • Dowling, T. E., 1995: Dynamics of Jovian atmospheres. Annu. Rev. Fluid Mech., 27 , 293334.

  • Dowling, T. E., A. S. Fischer, P. J. Gierasch, J. Harrington, R. P. Lebeau, and C. M. Santori, 1998: The Explicit Planetary Isentropic-Coordinate (EPIC) atmospheric model. Icarus, 132 , 221238.

    • Search Google Scholar
    • Export Citation
  • Dowling, T. E., and Coauthors, 2006: The EPIC atmospheric model with an isentropic/terrain-following hybrid vertical coordinate. Icarus, 182 , 259273.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1999: Thin jet and contour dynamics models of Gulf Stream meandering. Dyn. Atmos. Oceans, 29 , 189215.

  • Flierl, G. R., and A. R. Robinson, 1984: On the time-dependent meandering of a thin jet. J. Phys. Oceanogr., 14 , 412423.

  • Flierl, G. R., P. Malanotte-Rizzoli, and N. J. Zabusky, 1987: Nonlinear waves and coherent vortex structures in barotropic β-plane jets. J. Phys. Oceanogr., 17 , 14081438.

    • Search Google Scholar
    • Export Citation
  • Frolov, S. A., G. G. Sutyrin, and I. Ginis, 2004: Asymmetry of an equilibrated Gulf Stream–type jet over topographic slope. J. Phys. Oceanogr., 34 , 10871102.

    • Search Google Scholar
    • Export Citation
  • Godfrey, D. A., and V. Moore, 1986: The Saturnian ribbon feature—A baroclinically unstable model. Icarus, 68 , 313343.

  • Hall, M. M., and N. P. Fofonoff, 1993: Downstream development of the Gulf Stream from 68° to 55°W. J. Phys. Oceanogr., 23 , 225249.

  • Iselin, C. O’D., 1940: Preliminary report on long-period variations in the transport of the Gulf Stream system. Pap. Phys. Oceanogr. Meteor., 8 , 140.

    • Search Google Scholar
    • Export Citation
  • Lebeau, R. P., and T. E. Dowling, 1998: EPIC simulations of time-dependent, three-dimensional vortices with application to Neptune’s Great Dark Spot. Icarus, 132 , 239265.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and P. Cornillon, 1995: Temporal variation of meandering intensity and domain-wide lateral oscillations of the Gulf Stream. J. Geophys. Res., 100 , 1360313614.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and P. Cornillon, 1996: Propagation of Gulf Stream meanders between 74° and 70°W. J. Phys. Oceanogr., 26 , 205224.

  • Legarreta, J., and A. Sánchez-Lavega, 2008: Vertical structure of Jupiter’s troposphere from nonlinear simulations of long-lived vortices. Icarus, 196 , 184201.

    • Search Google Scholar
    • Export Citation
  • Logoutov, O., G. Sutyrin, and D. R. Watts, 2001: Potential vorticity structure across the Gulf Stream: Observations and a PV-gradient model. J. Phys. Oceanogr., 31 , 637644.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7 , 157167.

  • Meacham, S. P., 1991: Meander evolution on piecewise-uniform, quasi-geostrophic jets. J. Phys. Oceanogr., 21 , 11391170.

  • Meacham, S. P., and G. R. Flierl, 1991: Finite-amplitude waves on barotropic shear layers and jets. Geophys. Astrophys. Fluid Dyn., 56 , 357.

    • Search Google Scholar
    • Export Citation
  • Meinen, C., D. Luther, and M. Baringer, 2009: Structure, transport, and potential vorticity of the Gulf Stream at 68°W: Revisiting older data sets with new techniques. Deep-Sea Res. I, 56 , 4160.

    • Search Google Scholar
    • Export Citation
  • Momary, T. W., and Coauthors, 2006: The zoology of Saturn: The bizarre features unveiled by the 5 micron eyes of Cassini/VIMS. Bull. Amer. Astron. Soc., 38 , 499.

    • Search Google Scholar
    • Export Citation
  • Paldor, N., and M. Ghil, 1997: Linear instability of a zonal jet on an f plane. J. Phys. Oceanogr., 27 , 23612369.

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Polavarapu, S. M., and W. R. Peltier, 1993: The structure and nonlinear evolution of synoptic-scale cyclones. Part II: Wave–mean flow interaction and asymptotic equilibration. J. Atmos. Sci., 50 , 31643184.

    • Search Google Scholar
    • Export Citation
  • Poulin, F. J., and G. R. Flierl, 2003: The nonlinear evolution of barotropically unstable jets. J. Phys. Oceanogr., 33 , 21732192.

  • Poulin, F. J., and G. R. Flierl, 2005: The influence of topography on the stability of jets. J. Phys. Oceanogr., 35 , 811825.

  • Pratt, L. J., 1988: Meandering and eddy detachment according to a simple (looking) path equation. J. Phys. Oceanogr., 18 , 16271640.

  • Pratt, L. J., and M. E. Stern, 1986: Dynamics of potential vorticity fronts and eddy detachment. J. Phys. Oceanogr., 16 , 11011120.

  • Read, P. L., P. J. Gierasch, B. J. Conrath, A. Simon-Miller, T. Fouchet, and Y. H. Yamazaki, 2006: Mapping potential-vorticity dynamics on Jupiter. I: Zonal-mean circulation from Cassini and Voyager 1 data. Quart. J. Roy. Meteor. Soc., 132 , 15771603.

    • Search Google Scholar
    • Export Citation
  • Read, P. L., B. J. Conrath, L. N. Fletcher, P. J. Gierasch, A. A. Simon-Miller, and L. Zuchowski, 2009: Mapping potential vorticity dynamics on Saturn: Zonal mean circulation from Cassini and Voyager data. Planet. Space Sci., 57 , 16821698.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., J. R. Luyten, and F. C. Fuglister, 1974: Transient Gulf Stream meandering. Part I: An observational experiment. J. Phys. Oceanogr., 4 , 237255.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., J. R. Luyten, and G. Flierl, 1975: On the theory of thin rotating jets: A quasi-geostrophic time dependent model. Geophys. Astrophys. Fluid Dyn., 6 , 211244.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., and H-M. Zhang, 2001: The near-surface velocity and potential vorticity structure of the Gulf Stream. J. Mar. Res., 59 , 949975.

    • Search Google Scholar
    • Export Citation
  • Salyk, C., A. P. Ingersoll, J. Lorre, A. Vasavada, and A. D. Del Genio, 2006: Interaction between eddies and mean flow in Jupiter’s atmosphere: Analysis of Cassini imaging data. Icarus, 185 , 430442.

    • Search Google Scholar
    • Export Citation
  • Sánchez-Lavega, A., 2002: Observations of Saturn’s ribbon wave 14 years after its discovery. Icarus, 158 , 272275.

  • Sánchez-Lavega, A., J. F. Rojas, and P. V. Sada, 2000: Saturn’s zonal winds at cloud level. Icarus, 147 , 405420.

  • Sayanagi, K. M., and A. P. Showman, 2007: Effects of a large convective storm on Saturn’s equatorial jet. Icarus, 187 , 520539.

  • Sayanagi, K. M., A. P. Showman, and T. E. Dowling, 2008: The emergence of multiple robust zonal jets from freely evolving, three-dimensional stratified geostrophic turbulence with applications to Jupiter. J. Atmos. Sci., 65 , 39473962.

    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., and M. S. McCartney, 1993: On the North Atlantic circulation. Rev. Geophys., 31 , 2949.

  • Showman, A. P., and T. E. Dowling, 2000: Nonlinear simulations of Jupiter’s 5-micron hot spots. Science, 289 , 17371740.

  • Skamarock, W. C., and J. B. Klemp, 1992: The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Mon. Wea. Rev., 120 , 21092127.

    • Search Google Scholar
    • Export Citation
  • Smith, B. A., and Coauthors, 1982: A new look at the Saturn system: The Voyager 2 images. Science, 215 , 504537.

  • Sromovsky, L. A., H. E. Revercomb, R. J. Krauss, and V. E. Suomi, 1983: Voyager 2 observations of Saturn’s northern mid-latitude cloud features–Morphology, motions, and evolution. J. Geophys. Res., 88 , 86508666.

    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., I. Ginis, and S. A. Frolov, 2001: Equilibration of baroclinic meanders and deep eddies in a Gulf Stream–type jet over a sloping bottom. J. Phys. Oceanogr., 31 , 20492065.

    • Search Google Scholar
    • Export Citation
  • Swanson, K., and R. T. Pierrehumbert, 1994: Nonlinear wave packet evolution on a baroclinically unstable jet. J. Atmos. Sci., 51 , 384396.

    • Search Google Scholar
    • Export Citation
  • Tyler, G. L., V. R. Eshleman, J. D. Anderson, G. S. Levy, G. F. Lindal, G. E. Wood, and T. A. Croft, 1982: Radio science with Voyager 2 at Saturn: Atmosphere and ionosphere and the masses of Mimas, Tethys, and Iapetus. Science, 215 , 553558.

    • Search Google Scholar
    • Export Citation
  • Vasavada, A. R., and A. P. Showman, 2005: Jovian atmospheric dynamics: An update after Galileo and Cassini. Rep. Prog. Phys., 68 , 19351996.

    • Search Google Scholar
    • Export Citation
  • Weatherly, G. L., and E. A. Kelley, 1985: Storms and flow reversals at the HEBBLE site. Mar. Geol., 66 , 205218.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 540 363 65
PDF Downloads 181 67 2