In Situ Chemical Characterization of Aged Biomass-Burning Aerosols Impacting Cold Wave Clouds

Kerri A. Pratt Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California

Search for other papers by Kerri A. Pratt in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Heymsfield National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew J. Heymsfield in
Current site
Google Scholar
PubMed
Close
,
Cynthia H. Twohy Department of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Cynthia H. Twohy in
Current site
Google Scholar
PubMed
Close
,
Shane M. Murphy Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
Chemical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Shane M. Murphy in
Current site
Google Scholar
PubMed
Close
,
Paul J. DeMott Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Paul J. DeMott in
Current site
Google Scholar
PubMed
Close
,
James G. Hudson Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada

Search for other papers by James G. Hudson in
Current site
Google Scholar
PubMed
Close
,
R. Subramanian Droplet Measurement Technologies, Boulder, Colorado

Search for other papers by R. Subramanian in
Current site
Google Scholar
PubMed
Close
,
Zhien Wang Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Zhien Wang in
Current site
Google Scholar
PubMed
Close
,
John H. Seinfeld Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California

Search for other papers by John H. Seinfeld in
Current site
Google Scholar
PubMed
Close
, and
Kimberly A. Prather Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Kimberly A. Prather in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

During the Ice in Clouds Experiment–Layer Clouds (ICE-L), aged biomass-burning particles were identified within two orographic wave cloud regions over Wyoming using single-particle mass spectrometry and electron microscopy. Using a suite of instrumentation, particle chemistry was characterized in tandem with cloud microphysics. The aged biomass-burning particles comprised ∼30%–40% by number of the 0.1–1.0-μm clear-air particles and were composed of potassium, organic carbon, elemental carbon, and sulfate. Aerosol mass spectrometry measurements suggested these cloud-processed particles were predominantly sulfate by mass. The first cloud region sampled was characterized by primarily homogeneously nucleated ice particles formed at temperatures near −40°C. The second cloud period was characterized by high cloud droplet concentrations (∼150–300 cm−3) and lower heterogeneously nucleated ice concentrations (7–18 L−1) at cloud temperatures of −24° to −25°C. As expected for the observed particle chemistry and dynamics of the observed wave clouds, few significant differences were observed between the clear-air particles and cloud residues. However, suggestive of a possible heterogeneous nucleation mechanism within the first cloud region, ice residues showed enrichments in the number fractions of soot and mass fractions of black carbon, measured by a single-particle mass spectrometer and a single-particle soot photometer, respectively. In addition, enrichment of biomass-burning particles internally mixed with oxalic acid in both the homogeneously nucleated ice and cloud droplets compared to clear air suggests either preferential activation as cloud condensation nuclei or aqueous phase cloud processing.

b Current affiliation: Department of Chemistry, Purdue University, West Lafayette, Indiana

Corresponding author address: Kimberly A. Prather, 9500 Gilman Dr., M/C 0314, La Jolla, CA 92093–0314. Email: kprather@ucsd.edu

Abstract

During the Ice in Clouds Experiment–Layer Clouds (ICE-L), aged biomass-burning particles were identified within two orographic wave cloud regions over Wyoming using single-particle mass spectrometry and electron microscopy. Using a suite of instrumentation, particle chemistry was characterized in tandem with cloud microphysics. The aged biomass-burning particles comprised ∼30%–40% by number of the 0.1–1.0-μm clear-air particles and were composed of potassium, organic carbon, elemental carbon, and sulfate. Aerosol mass spectrometry measurements suggested these cloud-processed particles were predominantly sulfate by mass. The first cloud region sampled was characterized by primarily homogeneously nucleated ice particles formed at temperatures near −40°C. The second cloud period was characterized by high cloud droplet concentrations (∼150–300 cm−3) and lower heterogeneously nucleated ice concentrations (7–18 L−1) at cloud temperatures of −24° to −25°C. As expected for the observed particle chemistry and dynamics of the observed wave clouds, few significant differences were observed between the clear-air particles and cloud residues. However, suggestive of a possible heterogeneous nucleation mechanism within the first cloud region, ice residues showed enrichments in the number fractions of soot and mass fractions of black carbon, measured by a single-particle mass spectrometer and a single-particle soot photometer, respectively. In addition, enrichment of biomass-burning particles internally mixed with oxalic acid in both the homogeneously nucleated ice and cloud droplets compared to clear air suggests either preferential activation as cloud condensation nuclei or aqueous phase cloud processing.

b Current affiliation: Department of Chemistry, Purdue University, West Lafayette, Indiana

Corresponding author address: Kimberly A. Prather, 9500 Gilman Dr., M/C 0314, La Jolla, CA 92093–0314. Email: kprather@ucsd.edu

Save
  • Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2000: Reduction of tropical cloudiness by soot. Science, 288 , 10421047.

    • Search Google Scholar
    • Export Citation
  • Aiken, A. C., and Coauthors, 2008: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ. Sci. Technol., 42 , 44784485.

    • Search Google Scholar
    • Export Citation
  • Alfarra, M. R., and Coauthors, 2007: Identification of the mass spectral signature of organic aerosols from wood burning emissions. Environ. Sci. Technol., 41 , 57705777.

    • Search Google Scholar
    • Export Citation
  • Allan, J. D., and Coauthors, 2004: Submicron aerosol composition at Trinidad Head, California, during ITCT 2K2: Its relationship with gas phase volatile organic carbon and assessment of instrument performance. J. Geophys. Res., 109 , D23S24. doi:10.1029/2003JD004208.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and D. Rosenfeld, 2008: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci. Rev., 89 , 1341.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303 , 13371342.

    • Search Google Scholar
    • Export Citation
  • Angelino, S., D. T. Suess, and K. A. Prather, 2001: Formation of aerosol particles from reactions of secondary and tertiary alkylamines: Characterization by aerosol time-of-flight mass spectrometry. Environ. Sci. Technol., 35 , 31303138.

    • Search Google Scholar
    • Export Citation
  • Bahreini, R., and Coauthors, 2008: Design and operation of a pressure-controlled inlet for airborne sampling with an aerodynamic aerosol lens. Aerosol Sci. Technol., 42 , 465471.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., G. L. Kok, and G. B. Raga, 2007: On the diurnal variability of particle properties related to light absorbing carbon in Mexico City. Atmos. Chem. Phys., 7 , 25172526.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., R. Subramanian, C. Twohy, J. Stith, and G. Kok, 2008: Scavenging of black carbon by ice crystals over the northern Pacific. Geophys. Res. Lett., 35 , L22815. doi:10.1029/2008GL035764.

    • Search Google Scholar
    • Export Citation
  • Bhave, P. V., J. O. Allen, B. D. Morrical, D. P. Fergenson, G. R. Cass, and K. A. Prather, 2002: A field-based approach for determining ATOFMS instrument sensitivities to ammonium and nitrate. Environ. Sci. Technol., 36 , 48684879.

    • Search Google Scholar
    • Export Citation
  • Cachier, H., C. Liousse, P. Buat-Menard, and A. Gaudichet, 1995: Particulate content of savanna fire emissions. J. Atmos. Chem., 22 , 123148.

    • Search Google Scholar
    • Export Citation
  • Capes, G., B. Johnson, G. McFiggans, P. I. Williams, J. Haywood, and H. Coe, 2008: Aging of biomass burning aerosols over West Africa: Aircraft measurements of chemical composition, microphysical properties, and emission ratios. J. Geophys. Res., 113 , D00C15. doi:10.1029/2008JD009845.

    • Search Google Scholar
    • Export Citation
  • Chan, M. N., M. Y. Choi, N. L. Ng, and C. K. Chan, 2005: Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: Amino acids and biomass burning derived organic species. Environ. Sci. Technol., 39 , 15551562.

    • Search Google Scholar
    • Export Citation
  • Chand, D., R. Wood, T. L. Anderson, S. K. Satheesh, and R. J. Charlson, 2009: Satellite-derived direct radiative effect of aerosols dependent on cloud cover. Nat. Geosci., 2 , 181184.

    • Search Google Scholar
    • Export Citation
  • Cozic, J., B. Verheggen, S. Mertes, P. Connolly, K. Bower, A. Petzold, U. Baltensperger, and E. Weingartner, 2007: Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch. Atmos. Chem. Phys., 7 , 17971807.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., D. M. Murphy, P. K. Hudson, and D. S. Thomson, 2004a: Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE. J. Geophys. Res., 109 , D04201. doi:10.1029/2003JD004032.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., and Coauthors, 2004b: Observations of organic species and atmospheric ice formation. Geophys. Res. Lett., 31 , L12116. doi:10.1029/2004GL019822.

    • Search Google Scholar
    • Export Citation
  • Delene, D. J., and T. Deshler, 2001: Vertical profiles of cloud condensation nuclei above Wyoming. J. Geophys. Res., 106 , 1257912588.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 1990: An exploratory study of ice nucleation by soot aerosols. J. Appl. Meteor., 29 , 10721079.

  • DeMott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thomson, R. Borys, and D. C. Rogers, 2003: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100 , 1465514660.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., M. D. Petters, A. J. Prenni, C. M. Carrico, S. M. Kreidenweis, J. L. Collett, and H. Moosmüller, 2009: Ice nucleation behavior of biomass combustion particles at cirrus temperatures. J. Geophys. Res., 114 , D16205. doi:10.1029/2009JD012036.

    • Search Google Scholar
    • Export Citation
  • Drewnick, F., and Coauthors, 2005: A new time-of-flight aerosol mass spectrometer (TOF-AMS)—Instrument description and first field deployment. Aerosol Sci. Technol., 39 , 637658.

    • Search Google Scholar
    • Export Citation
  • Drewnick, F., J. Schneider, S. S. Hings, N. Hock, K. Noone, A. Targino, S. Weimer, and S. Borrmann, 2007: Measurement of ambient, interstitial, and residual aerosol particles on a mountaintop site in central Sweden using an aerosol mass spectrometer and a CVI. J. Atmos. Chem., 56 , 120.

    • Search Google Scholar
    • Export Citation
  • Eagan, R. C., P. V. Hobbs, and L. F. Radke, 1974: Measurements of cloud condensation nuclei and cloud droplet size distributions in the vicinity of forest fires. J. Appl. Meteor., 13 , 553557.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., and Coauthors, 2010: Ice initiation by aerosol particles: Measured and predicted ice nuclei concentrations versus measured ice crystal concentrations in an orographic wave cloud. J. Atmos. Sci., 67 , 24172436.

    • Search Google Scholar
    • Export Citation
  • Ervens, B., G. Feingold, G. J. Frost, and S. M. Kreidenweis, 2004: A modeling study of aqueous production of dicarboxylic acids: 1. Chemical pathways and speciated organic mass production. J. Geophys. Res., 109 , D15205. doi:10.1029/2003JD004387.

    • Search Google Scholar
    • Export Citation
  • Finlayson-Pitts, B. J., and J. N. Pitts, 2000: Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. Academic Press, 969 pp.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

    • Search Google Scholar
    • Export Citation
  • Gao, S., D. A. Hegg, P. V. Hobbs, T. W. Kirchstetter, B. I. Magi, and M. Sadilek, 2003: Water-soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution. J. Geophys. Res., 108 , 8491. doi:10.1029/2002JD002324.

    • Search Google Scholar
    • Export Citation
  • Grieshop, A. P., N. M. Donahue, and A. L. Robinson, 2009: Laboratory investigation of photochemical oxidation of organic aerosol from wood fires. 2: Analysis of aerosol mass spectrometer data. Atmos. Chem. Phys., 9 , 22272240.

    • Search Google Scholar
    • Export Citation
  • Heintzenberg, J., K. Okada, and J. Strom, 1996: On the composition of non-volatile material in upper tropospheric aerosols and cirrus crystals. Atmos. Res., 41 , 8188.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. M. Miloshevich, 1995: Relative humidity and temperature influences on cirrus formation and evolution: Observations from wave clouds and FIRE II. J. Atmos. Sci., 52 , 43024326.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., L. M. Miloshevich, C. Schmitt, A. Bansemer, C. Twohy, M. R. Poellot, A. Fridlind, and H. Gerber, 2005: Homogeneous ice nucleation in subtropical and tropical convection and its influence on cirrus anvil microphysics. J. Atmos. Sci., 62 , 4164.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, D., A. Tilgner, Y. Iinuma, and H. Herrmann, 2010: Atmospheric stability of levoglucosan: A detailed laboratory and modeling study. Environ. Sci. Technol., 44 , 694699.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., U. Lohmann, R. Erdin, and I. Tegen, 2008: The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds. Environ. Res. Lett., 3 , 025003. doi:10.1088/1748-9326/3/2/025003.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., 1989: An instantaneous CCN spectrometer. J. Atmos. Oceanic Technol., 6 , 10551065.

  • Hudson, J. G., J. Hallett, and C. F. Rogers, 1991: Field and laboratory measurements of cloud-forming properties of combustion aerosols. J. Geophys. Res., 96 , 1084710859.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., S. Noble, and V. Jha, 2010: Comparisons of CCN with supercooled clouds. J. Atmos. Sci., in press.

  • Hudson, P. K., and Coauthors, 2004: Biomass-burning particle measurements: Characteristic composition and chemical processing. J. Geophys. Res., 109 , D23S27. doi:10.1029/2003JD004398.

    • Search Google Scholar
    • Export Citation
  • Huffman, J. A., J. T. Jayne, F. Drewnick, A. C. Aiken, T. Onasch, D. R. Worsnop, and J. L. Jimenez, 2005: Design, modeling, optimization, and experimental tests of a particle beam width probe for the Aerodyne aerosol mass spectrometer. Aerosol Sci. Technol., 39 , 11431163.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., and T. Koop, 2005: The role of organic aerosols in homogeneous ice formation. Atmos. Chem. Phys., 5 , 703714.

  • Kärcher, B., O. Möhler, P. J. DeMott, S. Pechtl, and F. Yu, 2007: Insights into the role of soot aerosols in cirrus cloud formation. Atmos. Chem. Phys., 7 , 42034227.

    • Search Google Scholar
    • Export Citation
  • Knopf, D. A., and M. D. Lopez, 2009: Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions. Phys. Chem. Chem. Phys., 11 , 80568068.

    • Search Google Scholar
    • Export Citation
  • Koehler, K. A., and Coauthors, 2009: Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles. Phys. Chem. Chem. Phys., 11 , 79067920.

    • Search Google Scholar
    • Export Citation
  • Koop, T., B. P. Luo, A. Tsias, and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406 , 611614.

    • Search Google Scholar
    • Export Citation
  • Koren, I., J. V. Martins, L. A. Remer, and H. Afargan, 2008: Smoke invigoration versus inhibition of clouds over the Amazon. Science, 321 , 946949.

    • Search Google Scholar
    • Export Citation
  • Lammel, G., and T. Novakov, 1995: Water nucleation properties of carbon black and diesel soot particles. Atmos. Environ., 29 , 813823.

    • Search Google Scholar
    • Export Citation
  • Lee, Y. S., D. R. Collins, R. J. Li, K. P. Bowman, and G. Feingold, 2006: Expected impact of an aged biomass burning aerosol on cloud condensation nuclei and cloud droplet concentrations. J. Geophys. Res., 111 , D22204. doi:10.1029/2005JD006464.

    • Search Google Scholar
    • Export Citation
  • Leon, D., G. Vali, and M. Lothon, 2006: Dual-Doppler analysis in a single plane from an airborne platform. J. Atmos. Oceanic Technol., 23 , 322.

    • Search Google Scholar
    • Export Citation
  • Li, J., M. Pósfai, P. V. Hobbs, and P. R. Buseck, 2003: Individual aerosol particles from biomass burning in southern Africa: 2. Compositions and aging of inorganic particles. J. Geophys. Res., 108 , 8484. doi:10.1029/2002JD002310.

    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., and M. Fromm, 2008: Evidence of the cloud lifetime effect from wildfire-induced thunderstorms. Geophys. Res. Lett., 35 , L22809. doi:10.1029/2008GL035680.

    • Search Google Scholar
    • Export Citation
  • Liu, X., P. Van Espen, F. Adams, J. Cafmeyer, and W. Maenhaut, 2000: Biomass burning in southern Africa: Individual particle characterization of atmospheric aerosols and savanna fire samples. J. Atmos. Chem., 36 , 135155.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5 , 715737.

  • Matthew, B. M., A. M. Middlebrook, and T. B. Onasch, 2008: Collection efficiencies in an Aerodyne Aerosol Mass Spectrometer as a function of particle phase for laboratory generated aerosols. Aerosol Sci. Technol., 42 , 884898.

    • Search Google Scholar
    • Export Citation
  • Moffet, R. C., and K. A. Prather, 2009: In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. Proc. Natl. Acad. Sci. USA, 106 , 1187211877.

    • Search Google Scholar
    • Export Citation
  • Moffet, R. C., B. de Foy, L. T. Molina, M. J. Molina, and K. A. Prather, 2008: Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry. Atmos. Chem. Phys., 8 , 44994516.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., C. Linke, H. Saathoff, M. Schnaiter, R. Wagner, A. Mangold, M. Kramer, and U. Schurath, 2005a: Ice nucleation on flame soot aerosol of different organic carbon content. Meteor. Z., 14 , 477484.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2005b: Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles. J. Geophys. Res., 110 , D11210. doi:10.1029/2004JD005169.

    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., and Coauthors, 2006: Single-particle mass spectrometry of tropospheric aerosol particles. J. Geophys. Res., 111 , D23S32. doi:10.1029/2006JD007340.

    • Search Google Scholar
    • Export Citation
  • Murray, B. J., 2008: Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets. Atmos. Chem. Phys., 8 , 54235433.

    • Search Google Scholar
    • Export Citation
  • Noone, K. J., J. A. Ogren, J. Heintzenberg, R. J. Charlson, and D. S. Covert, 1988: Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. Aerosol Sci. Technol., 8 , 235244.

    • Search Google Scholar
    • Export Citation
  • Park, R. J., D. J. Jacob, and J. A. Logan, 2007: Fire and biofuel contributions to annual mean aerosol mass concentrations in the United States. Atmos. Environ., 41 , 73897400.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7 , 19611971.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., C. M. Carrico, S. M. Kreidenweis, A. J. Prenni, P. J. DeMott, J. L. Collett, and H. Moosmuller, 2009a: Cloud condensation nucleation activity of biomass burning aerosol. J. Geophys. Res., 114 , D22205. doi:10.1029/2009JD012353.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and Coauthors, 2009b: Ice nuclei emissions from biomass burning. J. Geophys. Res., 114 , D07209. doi:10.1029/2008JD011532.

    • Search Google Scholar
    • Export Citation
  • Petzold, A., J. Ström, S. Ohlsson, and F. P. Schröder, 1998: Elemental composition and morphology of ice-crystal residual particles in cirrus clouds and contrails. Atmos. Res., 49 , 2134.

    • Search Google Scholar
    • Export Citation
  • Pósfai, M., R. Simonics, J. Li, P. V. Hobbs, and P. R. Buseck, 2003: Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. J. Geophys. Res., 108 , 8483. doi:10.1029/2002JD002291.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and K. A. Prather, 2010: Aircraft measurements of vertical profiles of aerosol mixing states. J. Geophys. Res., D11305. doi:10.1029/2009JD013150.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2009: Development and characterization of an aircraft aerosol time-of-flight mass spectrometer. Anal. Chem., 81 , 17921800.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2010: Observation of playa salts as nuclei of orographic wave clouds. J. Geophys. Res., 115 , D15301. doi:10.1029/2009JD013606.

    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., P. J. DeMott, S. M. Kreidenweis, D. E. Sherman, L. M. Russell, and Y. Ming, 2001: The effects of low molecular weight dicarboxylic acids on cloud formation. J. Phys. Chem., 105A , 1124011248.

    • Search Google Scholar
    • Export Citation
  • Pueschel, R. F., and G. Langer, 1973: Sugar cane fires as a source of ice nuclei in Hawaii. J. Appl. Meteor., 12 , 549551.

  • Qin, X., and K. A. Prather, 2006: Impact of biomass emissions on particle chemistry during the California Regional Particulate Air Quality Study. Int. J. Mass Spectrom., 258 , 142150.

    • Search Google Scholar
    • Export Citation
  • Rader, D. J., and V. A. Marple, 1985: Effect of ultra-Stokesian drag and particle interception on impaction characteristics. Aerosol Sci. Technol., 4 , 141156.

    • Search Google Scholar
    • Export Citation
  • Reid, J. S., R. Koppmann, T. F. Eck, and D. P. Eleuterio, 2005: A review of biomass burning emissions. Part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys., 5 , 799825.

    • Search Google Scholar
    • Export Citation
  • Roberts, G. C., A. Nenes, J. H. Seinfeld, and M. O. Andreae, 2003: Impact of biomass burning on cloud properties in the Amazon Basin. J. Geophys. Res., 108 , 4062. doi:10.1029/2001JD000985.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., P. J. DeMott, S. M. Kreidenweis, and Y. Chen, 2001: A continuous-flow diffusion chamber for airborne measurements of ice nuclei. J. Atmos. Oceanic Technol., 18 , 725741.

    • Search Google Scholar
    • Export Citation
  • Schwarz, J. P., and Coauthors, 2006: Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J. Geophys. Res., 111 , D16207. doi:10.1029/2006JD007076.

    • Search Google Scholar
    • Export Citation
  • Silva, P. J., D. Y. Liu, C. A. Noble, and K. A. Prather, 1999: Size and chemical characterization of individual particles resulting from biomass burning of local southern California species. Environ. Sci. Technol., 33 , 30683076.

    • Search Google Scholar
    • Export Citation
  • Simoneit, B. R. T., J. J. Schauer, C. G. Nolte, D. R. Oros, V. O. Elias, M. P. Fraser, W. F. Rogge, and G. R. Cass, 1999: Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos. Environ., 33 , 173182.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, A., M-L. Lu, F. J. Brechtel, H. Jonsson, G. Feingold, R. C. Flagan, and J. H. Seinfeld, 2007: On the source of organic acid aerosol layers above clouds. Environ. Sci. Technol., 41 , 46474654.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, A., and Coauthors, 2008: Comprehensive airborne characterization of aerosol from a major bovine source. Atmos. Chem. Phys., 8 , 54895520.

    • Search Google Scholar
    • Export Citation
  • Sun, J. M., and P. A. Ariya, 2006: Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review. Atmos. Environ., 40 , 795820.

    • Search Google Scholar
    • Export Citation
  • Takegawa, N., T. Miyakawa, K. Kawamura, and Y. Kondo, 2007: Contribution of selected dicarboxylic and ω-oxocarboxylic acids in ambient aerosol to the m/z 44 signal of an Aerodyne Aerosol Mass Spectrometer. Aerosol Sci. Technol., 41 , 418437.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and M. R. Poellot, 2005: Chemical characteristics of ice residual nuclei in anvil cirrus clouds: Evidence for homogeneous and heterogeneous ice formation. Atmos. Chem. Phys., 5 , 22892297.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and J. R. Anderson, 2008: Droplet nuclei in non-precipitating clouds: composition and size matter. Environ. Res. Lett., 3 , 045002. doi:10.1088/1748-9326/3/4/045002.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., A. J. Schanot, and W. A. Cooper, 1997: Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor. J. Atmos. Oceanic Technol., 14 , 197202.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and Coauthors, 2010: Relationships of biomass-burning aerosols to ice in orographic wave clouds. J. Atmos. Sci., 67 , 24372450.

    • Search Google Scholar
    • Export Citation
  • Vestin, A., J. Rissler, E. Swietlicki, G. P. Frank, and M. O. Andreae, 2007: Cloud-nucleating properties of the Amazonian biomass burning aerosol: Cloud condensation nuclei measurements and modeling. J. Geophys. Res., 112 , D14201. doi:10.1029/2006JD008104.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., P. Wechsler, W. Kuestner, J. French, A. Rodi, B. Glover, M. Burkhart, and D. Lukens, 2009: Wyoming Cloud Lidar: Instrument description and applications. Opt. Express, 17 , 1357613587.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. F. Khalizov, J. Pagels, D. Zhang, H. Xue, and P. H. McMurry, 2008: Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proc. Natl. Acad. Sci. USA, 105 , 1029110296.

    • Search Google Scholar
    • Export Citation
  • Zobrist, B., and Coauthors, 2006: Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect. Atmos. Chem. Phys., 6 , 31153129.

    • Search Google Scholar
    • Export Citation
  • Zobrist, B., C. Marcolli, D. A. Pedernera, and T. Koop, 2008: Do atmospheric aerosols form glasses? Atmos. Chem. Phys., 8 , 52215244.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2109 1143 376
PDF Downloads 754 108 4