On the Role of Sloping Terrain in the Forcing of the Great Plains Low-Level Jet

Thomas R. Parish Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Thomas R. Parish in
Current site
Google Scholar
PubMed
Close
and
Larry D. Oolman Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Larry D. Oolman in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The summertime Great Plains low-level jet (LLJ) has been the subject of numerous investigations during the past several decades. Characteristics of the LLJ include nighttime development of a pronounced wind maximum of typically 15–20 m s−1 at levels 300–800 m above the surface and a clockwise rotation of the wind maximum during the course of the night. Maximum frequency of occurrence of the LLJ is found in the southern Great Plains. Theories proposed to explain the diurnal wind maximum of the Great Plains LLJ include inertial oscillation of the ageostrophic wind, the diurnal oscillation of the horizontal pressure field associated with heating and cooling of the sloping terrain, and the western boundary current interpretations. A simple equation system and output from the 12-km horizontal resolution Weather Research and Forecasting Nonhydrostatic Mesoscale Model (NAM) for July 2008 are used to provide evidence as to the importance of the Great Plains topography in driving the LLJ. Summertime heating of the sloping terrain is critical in establishing the climatological position for the Great Plains LLJ. Heating enhances the background geostrophic flow associated with the Bermuda high, resulting in a maximum low-level mean summertime flow over the Great Plains region. Maximum geostrophic winds in the NAM are found during late afternoon, providing a large background wind on which frictional decoupling can act. The nighttime LLJ maximum is the result of an inertial oscillation of the unbalanced components that arise fundamentally from frictional decoupling. Diurnal heating of the sloping terrain forces a cycle in the geostrophic wind that is out of phase with the wind maximum.

Corresponding author address: Thomas R. Parish, Department of Atmospheric Science, University of Wyoming, Laramie, WY 82071. Email: parish@uwyo.edu

Abstract

The summertime Great Plains low-level jet (LLJ) has been the subject of numerous investigations during the past several decades. Characteristics of the LLJ include nighttime development of a pronounced wind maximum of typically 15–20 m s−1 at levels 300–800 m above the surface and a clockwise rotation of the wind maximum during the course of the night. Maximum frequency of occurrence of the LLJ is found in the southern Great Plains. Theories proposed to explain the diurnal wind maximum of the Great Plains LLJ include inertial oscillation of the ageostrophic wind, the diurnal oscillation of the horizontal pressure field associated with heating and cooling of the sloping terrain, and the western boundary current interpretations. A simple equation system and output from the 12-km horizontal resolution Weather Research and Forecasting Nonhydrostatic Mesoscale Model (NAM) for July 2008 are used to provide evidence as to the importance of the Great Plains topography in driving the LLJ. Summertime heating of the sloping terrain is critical in establishing the climatological position for the Great Plains LLJ. Heating enhances the background geostrophic flow associated with the Bermuda high, resulting in a maximum low-level mean summertime flow over the Great Plains region. Maximum geostrophic winds in the NAM are found during late afternoon, providing a large background wind on which frictional decoupling can act. The nighttime LLJ maximum is the result of an inertial oscillation of the unbalanced components that arise fundamentally from frictional decoupling. Diurnal heating of the sloping terrain forces a cycle in the geostrophic wind that is out of phase with the wind maximum.

Corresponding author address: Thomas R. Parish, Department of Atmospheric Science, University of Wyoming, Laramie, WY 82071. Email: parish@uwyo.edu

Save
  • Blackadar, A. K., 1957: Boundary-layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38 , 283290.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low-level jet. Mon. Wea. Rev., 96 , 833850.

  • Bonner, W. D., and J. Paegle, 1970: Diurnal variations in boundary layer winds over the south-central United States in summer. Mon. Wea. Rev., 98 , 735744.

    • Search Google Scholar
    • Export Citation
  • Fast, J. D., and M. D. McCorcle, 1990: A two-dimensional numerical sensitivity study of the Great Plains low-level jet. Mon. Wea. Rev., 118 , 151163.

    • Search Google Scholar
    • Export Citation
  • Hess, S. L., 1959: Introduction to Theoretical Meteorology. Holt, Rinehart, and Winston, 362 pp.

  • Hoecker, W. H., 1963: Three southerly low-level jet systems delineated by the Weather Bureau special pibal network of 1961. Mon. Wea. Rev., 91 , 573582.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19 , 199205.

  • Jiang, X., N-C. Lau, I. M. Held, and J. J. Ploshay, 2007: Mechanisms of the Great Plains low-level jet as simulated in an AGCM. J. Atmos. Sci., 64 , 532547.

    • Search Google Scholar
    • Export Citation
  • Lettau, H., and B. Davidson, 1957: Exploring the Atmosphere’s First Mile. Vol. 2. Pergamon Press, 202 pp.

  • Olson, J. B., B. A. Colle, N. A. Bond, and N. Winstead, 2007: A comparison of two coastal barrier jet events along the southeast Alaskan coast during the SARJET field experiment. Mon. Wea. Rev., 135 , 29732994. Corrigendum, 135, 3642–3663.

    • Search Google Scholar
    • Export Citation
  • Pan, Z., M. Segal, and R. W. Arritt, 2004: Role of topography in forcing low-level jets in the central United States during the 1993 flood-altered terrain simulations. Mon. Wea. Rev., 132 , 396403.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., A. R. Rodi, and R. D. Clark, 1988: A case study of the summertime Great Plains low-level jet. Mon. Wea. Rev., 116 , 94105.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., and B. Wyman, 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci., 42 , 9771003.

  • Schwerdtfeger, W., 1975: The effect of the Antarctic Peninsula on the temperature regime of the Weddell Sea. Mon. Wea. Rev., 103 , 4551.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and H. Wang, 2006: The role of the North American topography on the maintenance of the Great Plains summer low-level jet. J. Atmos. Sci., 63 , 10561068.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., 1980: On the role of upper tropospheric jet streaks and leeside cyclogenesis in the development of low-level jets in the Great Plains. Mon. Wea. Rev., 108 , 16891696.

    • Search Google Scholar
    • Export Citation
  • Wexler, H., 1961: A boundary-layer interpretation of the low-level jet. Tellus, 13 , 368378.

  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36 , 13631376.

    • Search Google Scholar
    • Export Citation
  • Zemba, J., and C. A. Friehe, 1987: The marine atmospheric boundary layer jet in the Coastal Ocean Dynamics Experiment. J. Geophys. Res., 92 , (C2). 14891496.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., J. Fast, and X. Bian, 1996: A case study of the Great Plains low-level jet using wind profiler network data and a high-resolution mesoscale model. Mon. Wea. Rev., 124 , 785806.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1884 1147 416
PDF Downloads 727 188 7