A Piecewise Potential Vorticity Inversion Algorithm and Its Application to Hurricane Inner-Core Anomalies

Chanh Q. Kieu Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Chanh Q. Kieu in
Current site
Google Scholar
PubMed
Close
and
Da-Lin Zhang Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Da-Lin Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, a piecewise potential vorticity (PV) inversion algorithm for an arbitrary number of PV pieces is developed by extending Wang and Zhang’s PV inversion scheme, and then the nonlinear responses to various types and magnitudes of axisymmetric PV anomalies (PVAs) in hurricane vortices are investigated. Results show that the upper- and lower-level PVAs in the eye help enhance cyclonic flows in the eyewall, but with weak vertical interactions between them. The balanced flows corresponding to the PVAs in the eyewall appear to account for a substantial portion of the warm core and the minimum pressure in the eye. However, the lower-level PVA in the eye inversion layer is more effective in contributing to the hurricane intensity than that at the upper levels. Results also show that the radius of the balanced response of PVAs is more sensitive to the mean vortex intensity than the vertical penetration; the weaker the mean vortex intensity, the larger the radius of the influence will be. Similar behaviors are also observed for the quasi-balanced secondary circulations. That is, given a diabatic heating profile in the eyewall, the weaker the background vortex or the PVAs, the stronger the secondary circulations will be.

It is found that the development of an outer eyewall (or spiral rainbands) could be inimical to the inner eyewall in several ways, such as by 1) adding an anticyclonic flow inside to offset the cyclonic rotation of the inner eyewall, 2) enhancing a ring of a lower pressure zone underneath to broaden the inner-core lower pressure region, 3) inducing an inward (outward) radial flow outside (inside) in the PBL (upper level) to block the energy supply to (outflow of) the inner eyewall, and 4) generating subsidence between the two eyewalls to suppress the development of deep convection in the inner eyewall.

Corresponding author address: Dr. Da-Lin Zhang, Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, MD 20742. Email: dalin@atmos.umd.edu

Abstract

In this study, a piecewise potential vorticity (PV) inversion algorithm for an arbitrary number of PV pieces is developed by extending Wang and Zhang’s PV inversion scheme, and then the nonlinear responses to various types and magnitudes of axisymmetric PV anomalies (PVAs) in hurricane vortices are investigated. Results show that the upper- and lower-level PVAs in the eye help enhance cyclonic flows in the eyewall, but with weak vertical interactions between them. The balanced flows corresponding to the PVAs in the eyewall appear to account for a substantial portion of the warm core and the minimum pressure in the eye. However, the lower-level PVA in the eye inversion layer is more effective in contributing to the hurricane intensity than that at the upper levels. Results also show that the radius of the balanced response of PVAs is more sensitive to the mean vortex intensity than the vertical penetration; the weaker the mean vortex intensity, the larger the radius of the influence will be. Similar behaviors are also observed for the quasi-balanced secondary circulations. That is, given a diabatic heating profile in the eyewall, the weaker the background vortex or the PVAs, the stronger the secondary circulations will be.

It is found that the development of an outer eyewall (or spiral rainbands) could be inimical to the inner eyewall in several ways, such as by 1) adding an anticyclonic flow inside to offset the cyclonic rotation of the inner eyewall, 2) enhancing a ring of a lower pressure zone underneath to broaden the inner-core lower pressure region, 3) inducing an inward (outward) radial flow outside (inside) in the PBL (upper level) to block the energy supply to (outflow of) the inner eyewall, and 4) generating subsidence between the two eyewalls to suppress the development of deep convection in the inner eyewall.

Corresponding author address: Dr. Da-Lin Zhang, Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, MD 20742. Email: dalin@atmos.umd.edu

Save
  • Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of Category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136 , 20232046.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120 , 947957.

  • Blackwell, K. G., 2000: The evolution of Hurricane Danny (1997) at landfall: Doppler-observed eyewall replacement, vortex contraction/intensification, and low-level wind maxima. Mon. Wea. Rev., 128 , 40024016.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58 , 21282145.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 49 , 13971411.

  • Davis, C. A., and K. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119 , 19291953.

  • Egger, J., 2008: Piecewise potential vorticity inversion: Elementary tests. J. Atmos. Sci., 65 , 20152024.

  • Eliassen, A., 1952: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5 , 1960.

    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50 , 33803403.

  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43 , 15591573.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29 , 1137.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • Huo, Z., D-L. Zhang, and J. R. Gyakum, 1998: An application of potential vorticity inversion to improving the numerical prediction of the March 1993 superstorm. Mon. Wea. Rev., 126 , 424436.

    • Search Google Scholar
    • Export Citation
  • Huo, Z., D-L. Zhang, and J. R. Gyakum, 1999: Interaction of potential vorticity anomalies in extratropical cyclogenesis. Part I: Static piecewise inversion. Mon. Wea. Rev., 127 , 25462562.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., W. H. Schubert, and M. T. Montgomery, 2000: Unstable interactions between a hurricane’s primary eyewall and a secondary ring of enhanced vorticity. J. Atmos. Sci., 24 , 38933917.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., D-L. Zhang, and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127 , 25972616.

    • Search Google Scholar
    • Export Citation
  • McNoldy, B. D., 2004: Triple eyewall in Hurricane Juliette. Bull. Amer. Meteor. Soc., 85 , 16631666.

  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47 , 30673077.

  • Rossby, C. G., 1940: Planetary flow patterns in the atmosphere. Quart. J. Roy. Meteor. Soc., 66 , 6887.

  • Rozoff, C. M., W. H. Schubert, and J. P. Kossin, 2008: Some dynamical aspects of tropical cyclone concentric eyewalls. Quart. J. Roy. Meteor. Soc., 134 , 583593.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and J. D. Möller, 2003: Influence of atmospheric asymmetries on the intensification of Hurricane Opal: Piecewise PV inversion diagnosis of a GFDL model forecast. Mon. Wea. Rev., 131 , 16371649.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and D-L. Zhang, 2003: Potential vorticity diagnosis of a simulated hurricane. Part I: Formulation and quasi-balanced flow. J. Atmos. Sci., 60 , 15931607.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65 , 11581181.

  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66 , 12501273.

  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39 , 395411.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., F. D. Marks, and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41 , 31893211.

    • Search Google Scholar
    • Export Citation
  • Wu, C-C., and K. A. Emanuel, 1995a: Potential vorticity diagnostics of hurricane movement. Part I: A case study of Hurricane Bob (1991). Mon. Wea. Rev., 123 , 6992.

    • Search Google Scholar
    • Export Citation
  • Wu, C-C., and K. A. Emanuel, 1995b: Potential vorticity diagnostics of hurricane movement. Part II: Tropical Storm Ana (1991) and Hurricane Andrew (1992). Mon. Wea. Rev., 123 , 93109.

    • Search Google Scholar
    • Export Citation
  • Yau, M. K., Y. Liu, D-L. Zhang, and Y. Chen, 2004: A multiscale numerical study of Hurricane Andrew (1992). Part VI: Small-scale inner-core structures and wind streaks. Mon. Wea. Rev., 132 , 14101433.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and C. Q. Kieu, 2006: Potential vorticity diagnosis of a simulated hurricane. Part II: Quasi-balanced contributions to forced secondary circulations. J. Atmos. Sci., 63 , 28982914.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., Y. Liu, and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129 , 92107.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., Y. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130 , 27452763.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., D-L. Zhang, and F. Weng, 2004: Numerical simulation of Hurricane Bonnie (1998). Part I: Eyewall evolution and intensity changes. Mon. Wea. Rev., 132 , 225241.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 528 215 58
PDF Downloads 440 142 24