A Classical-Theory-Based Parameterization of Heterogeneous Ice Nucleation by Mineral Dust, Soot, and Biological Particles in a Global Climate Model

Corinna Hoose Department of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by Corinna Hoose in
Current site
Google Scholar
PubMed
Close
,
Jón Egill Kristjánsson Department of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by Jón Egill Kristjánsson in
Current site
Google Scholar
PubMed
Close
,
Jen-Ping Chen Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Jen-Ping Chen in
Current site
Google Scholar
PubMed
Close
, and
Anupam Hazra Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Anupam Hazra in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

An ice nucleation parameterization based on classical nucleation theory, with aerosol-specific parameters derived from experiments, has been implemented into a global climate model—the Community Atmosphere Model (CAM)-Oslo. The parameterization treats immersion, contact, and deposition nucleation by mineral dust, soot, bacteria, fungal spores, and pollen in mixed-phase clouds at temperatures between 0° and −38°C. Immersion freezing is considered for insoluble particles that are activated to cloud droplets, and deposition and contact nucleation are only allowed for uncoated, unactivated aerosols. Immersion freezing by mineral dust is found to be the dominant ice formation process, followed by immersion and contact freezing by soot. The simulated biological aerosol contribution to global atmospheric ice formation is marginal, even with high estimates of their ice nucleation activity, because the number concentration of ice nucleation active biological particles in the atmosphere is low compared to other ice nucleating aerosols. Because of the dominance of mineral dust, the simulated ice nuclei concentrations at temperatures below −20°C are found to correlate with coarse-mode aerosol particle concentrations. The ice nuclei (IN) concentrations in the model agree well overall with in situ continuous flow diffusion chamber measurements. At individual locations, the model exhibits a stronger temperature dependence on IN concentrations than what is observed. The simulated IN composition (77% mineral dust, 23% soot, and 10−5% biological particles) lies in the range of observed ice nuclei and ice crystal residue compositions.

* Current affiliation: Institute for Meteorology and Climate Research (IMK-AAF), Karlsruhe Institute of Technology, Karlsruhe, Germany

+ Current affiliation: Indian Institute of Tropical Meteorology, Pune, India

Corresponding author address: Corinna Hoose, Department of Geosciences, University of Oslo, P.O. Box 1022, Blindern, 0315 Oslo, Norway. Email: corinna.hoose@kit.edu

Abstract

An ice nucleation parameterization based on classical nucleation theory, with aerosol-specific parameters derived from experiments, has been implemented into a global climate model—the Community Atmosphere Model (CAM)-Oslo. The parameterization treats immersion, contact, and deposition nucleation by mineral dust, soot, bacteria, fungal spores, and pollen in mixed-phase clouds at temperatures between 0° and −38°C. Immersion freezing is considered for insoluble particles that are activated to cloud droplets, and deposition and contact nucleation are only allowed for uncoated, unactivated aerosols. Immersion freezing by mineral dust is found to be the dominant ice formation process, followed by immersion and contact freezing by soot. The simulated biological aerosol contribution to global atmospheric ice formation is marginal, even with high estimates of their ice nucleation activity, because the number concentration of ice nucleation active biological particles in the atmosphere is low compared to other ice nucleating aerosols. Because of the dominance of mineral dust, the simulated ice nuclei concentrations at temperatures below −20°C are found to correlate with coarse-mode aerosol particle concentrations. The ice nuclei (IN) concentrations in the model agree well overall with in situ continuous flow diffusion chamber measurements. At individual locations, the model exhibits a stronger temperature dependence on IN concentrations than what is observed. The simulated IN composition (77% mineral dust, 23% soot, and 10−5% biological particles) lies in the range of observed ice nuclei and ice crystal residue compositions.

* Current affiliation: Institute for Meteorology and Climate Research (IMK-AAF), Karlsruhe Institute of Technology, Karlsruhe, Germany

+ Current affiliation: Indian Institute of Tropical Meteorology, Pune, India

Corresponding author address: Corinna Hoose, Department of Geosciences, University of Oslo, P.O. Box 1022, Blindern, 0315 Oslo, Norway. Email: corinna.hoose@kit.edu

Save
  • Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation. 2. Multiple aerosol types. J. Geophys. Res., 105 , (D5). 68376844.

    • Search Google Scholar
    • Export Citation
  • Ansmann, A., and Coauthors, 2008: Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment. J. Geophys. Res., 113 , D04210. doi:10.1029/2007JD008785.

    • Search Google Scholar
    • Export Citation
  • Ansmann, A., and Coauthors, 2009: Evolution of the ice phase in tropical altocumulus: SAMUM lidar observations over Cape Verde. J. Geophys. Res., 114 , D17208. doi:10.1029/2008JD011659.

    • Search Google Scholar
    • Export Citation
  • Ariya, P., J. Sun, N. Eltouny, E. Hudson, C. Hayes, and G. Kos, 2009: Physical and chemical characterization of bioaerosols—Implications for nucleation processes. Int. Rev. Phys. Chem., 28 , 132.

    • Search Google Scholar
    • Export Citation
  • Bowers, R. M., C. L. Lauber, C. Wiedinmyer, M. Hamady, A. G. Hallar, R. Fall, R. Knight, and N. Fierer, 2009: Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl. Environ. Microbiol., 75 , 51215130.

    • Search Google Scholar
    • Export Citation
  • Bundke, U., B. Nillius, R. Jaenicke, T. Wetter, H. Klein, and H. Bingemer, 2008: The fast ice nucleus chamber FINCH. Atmos. Res., 90 , 180186.

    • Search Google Scholar
    • Export Citation
  • Burrows, S. M., T. Butler, P. Jöckel, H. Tost, A. Kerkweg, U. Pöschl, and M. G. Lawrence, 2009: Bacteria in the global atmosphere. Part 2: Modeling of emissions and transport between different ecosystems. Atmos. Chem. Phys., 9 , 92819297.

    • Search Google Scholar
    • Export Citation
  • Cantrell, W., and A. Heymsfield, 2005: Production of ice in tropospheric clouds: A review. Bull. Amer. Meteor. Soc., 86 , 795807.

  • Chen, J-P., 1994: Theory of deliquescence and modified Köhler curves. J. Atmos. Sci., 51 , 35053516.

  • Chen, J-P., A. Hazra, and Z. Levin, 2008: Parameterizing ice nucleation rates using contact angle and activation energy derived from laboratory data. Atmos. Chem. Phys., 8 , 74317449.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Constantinidou, H. A., S. S. Hirano, L. S. Baker, and C. D. Upper, 1990: Atmospheric dispersal of ice nucleation-active bacteria: The role of rain. Phytopathology, 80 , 934937.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1974: A possible mechanism for contact nucleation. J. Atmos. Sci., 31 , 18321837.

  • Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25 , 16581680.

    • Search Google Scholar
    • Export Citation
  • Cozic, J., and Coauthors, 2008: Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmos. Chem. Phys., 8 , 407423.

    • Search Google Scholar
    • Export Citation
  • Croft, B., and Coauthors, 2010: Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM. Atmos. Chem. Phys., 10 , 15111543.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., D. M. Murphy, P. K. Hudson, and D. S. Thomson, 2004: Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE. J. Geophys. Res., 109 , D04201. doi:10.1029/2003JD004032.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., K. D. Froyd, S. J. Gallavardin, O. Moehler, S. Benz, H. Saathoff, and D. M. Murphy, 2009a: Deactivation of ice nuclei due to atmospherically relevant surface coatings. Environ. Res. Lett., 4 , 044013. doi:10.1088/1748-9326/4/4/044013.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., and Coauthors, 2009b: Inadvertent climate modification due to anthropogenic lead. Nat. Geosci., 2 , 333336. doi:10.1038/ngeo499.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 1990: An exploratory study of ice nucleation by soot aerosols. J. Appl. Meteor., 29 , 10721079.

  • DeMott, P. J., 1995: Quantitative descriptions of ice formation mechanisms of silver iodide-type aerosols. Atmos. Res., 38 , 6399.

  • DeMott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thomson, R. Borys, and D. C. Rogers, 2003a: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100 , 1465514660.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003b: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30 , 1732. doi:10.1029/2003GL017410.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., A. J. Prenni, M. S. Richardson, S. M. Kreidenweis, C. H. Twohy, and D. C. Rogers, 2006: Ice nuclei variability, relation to ambient aerosol properties, and impacts on mixed-phase clouds. Preprints, 12th Conf. on Cloud Physics, Madison, WI, Amer. Meteor. Soc., 2.1 [Available online at http://ams.confex.com/ams/Madison2006/techprogram/paper_113242.htm].

    • Search Google Scholar
    • Export Citation
  • Dentener, F., and Coauthors, 2006: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos. Chem. Phys., 6 , 43214344.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., and S. K. Mitra, 1998: A laboratory study of the effects of a kerosene-burner exhaust on ice nucleation and the evaporation rate of ice crystals. Atmos. Environ., 32 , 31453151.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., and S. Wurzler, 2004: Heterogeneous drop freezing in the immersion mode: Model calculations considering soluble and insoluble particles in the drops. J. Atmos. Sci., 61 , 20632072.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., S. Matthias-Maser, S. K. Mitra, and R. Jaenicke, 2002: The ice nucleating ability of pollen. Part II: Laboratory studies in immersion and contact freezing modes. Atmos. Res., 61 , 125133.

    • Search Google Scholar
    • Export Citation
  • Durant, A. J., and R. A. Shaw, 2005: Evaporation freezing by contact nucleation inside-out. Geophys. Res. Lett., 32 , L20814. doi:10.1029/2005GL024175.

    • Search Google Scholar
    • Export Citation
  • Durant, A. J., R. A. Shaw, W. I. Rose, Y. Mi, and G. G. J. Ernst, 2008: Ice nucleation and overseeding of ice in volcanic clouds. J. Geophys. Res., 113 , D09206. doi:10.1029/2007JD009064.

    • Search Google Scholar
    • Export Citation
  • Dymarska, M., B. J. Murray, L. Sun, M. L. Eastwood, D. A. Knopf, and A. K. Bertram, 2006: Deposition ice nucleation on soot at temperatures relevant for the lower troposphere. J. Geophys. Res., 111 , D04204. doi:10.1029/2005JD006627.

    • Search Google Scholar
    • Export Citation
  • Eastwood, M. L., S. Cremel, C. Gehrke, E. Girard, and A. K. Bertram, 2008: Ice nucleation on mineral dust particles: Onset conditions, nucleation rates and contact angles. J. Geophys. Res., 113 , D22203. doi:10.1029/2008JD010639.

    • Search Google Scholar
    • Export Citation
  • Eastwood, M. L., S. Cremel, M. Wheeler, B. J. Murray, E. Girard, and A. K. Bertram, 2009: Effects of sulfuric acid and ammonium sulfate coatings on the ice nucleation properties of kaolinite particles. Geophys. Res. Lett., 36 , L02811. doi:10.1029/2008GL035997.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., P. J. DeMott, and S. M. Kreidenweis, 2009: A comparison of heterogeneous ice nucleation parameterizations using a parcel model framework. J. Geophys. Res., 114 , D06202. doi:10.1029/2008JD011095.

    • Search Google Scholar
    • Export Citation
  • Elbert, W., P. E. Taylor, M. O. Andreae, and U. Pöschl, 2007: Contribution of fungi to primary biogenic aerosols in the atmosphere: Wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos. Chem. Phys., 7 , 45694588.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., O. Möhler, P. Connolly, M. Krämer, R. Cotton, A. J. Heymsfield, H. Saathoff, and M. Schnaiter, 2006: Some ice nucleation characteristics of Asian and Saharan desert dust. Atmos. Chem. Phys., 6 , 29913006.

    • Search Google Scholar
    • Export Citation
  • Fletcher, N. H., 1962: Physics of Rain Clouds. Cambridge University Press, 386 pp.

  • Fornea, A. P., S. D. Brooks, J. B. Dooley, and A. Saha, 2009: Heterogeneous freezing of ice on atmospheric aerosols containing ash, soot, and soil. J. Geophys. Res., 114 , D13201. doi:10.1029/2009JD011958.

    • Search Google Scholar
    • Export Citation
  • Fukuta, N., and R. C. Schaller, 1982: Ice nucleation by aerosol particles: Theory of condensation-freezing nucleation. J. Atmos. Sci., 39 , 648655.

    • Search Google Scholar
    • Export Citation
  • Georgii, H. W., and E. Kleinjung, 1967: Relations between the chemical composition of atmospheric aerosol particles and the concentration of natural ice nuclei. J. Rech. Atmos., 3 , 145156.

    • Search Google Scholar
    • Export Citation
  • Gorbunov, B., A. Baklanov, N. Kakutkina, H. L. Windsor, and R. Toumi, 2001: Ice nucleation on soot particles. J. Aerosol Sci., 32 , 199215.

    • Search Google Scholar
    • Export Citation
  • Heald, C. L., and D. V. Spracklen, 2009: Atmospheric budget of primary biological aerosol particles from fungal spores. Geophys. Res. Lett., 36 , L09806. doi:10.1029/2009GL037493.

    • Search Google Scholar
    • Export Citation
  • Henderson-Begg, S. K., T. Hill, R. Thyrhaug, M. Khan, and B. F. Moffett, 2009: Terrestrial and airborne non-bacterial ice nuclei. Atmos. Sci. Lett., 10 , 215219. doi:10.1002/asl.241.

    • Search Google Scholar
    • Export Citation
  • Hirano, S. S., and C. D. Upper, 1995: Ecology of ice nucleation-active bacteria. Biological Ice Nucleation and Its Applications, R. E. Lee, G. J. Warren, and L. V. Gusta, Eds., The American Phytopathological Society, 41–61.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., U. Lohmann, R. Erdin, and I. Tegen, 2008: The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds. Environ. Res. Lett., 3 , 025003. doi:10.1088/1748-9326/3/2/025003.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., J. E. Kristjánsson, T. Iversen, A. Kirkevåg, Ø Seland, and A. Gettelman, 2009: Constraining cloud droplet number concentration in GCMs suppresses the aerosol indirect effect. Geophys. Res. Lett., 36 , L12807. doi:10.1029/2009GL038568.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., J. E. Kristjánsson, and S. M. Burrows, 2010: How important is biological ice nucleation in clouds on a global scale? Environ. Res. Lett., 5 , 024009. doi:10.1088/1748-9326/5/2/024009.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., and D. G. Streets, 2009: Influence of future anthropogenic emissions on climate, natural emissions, and air quality. J. Geophys. Res., 114 , D08118. doi:10.1029/2008JD011476.

    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., and J. P. D. Abbatt, 2006: Laboratory studies of ice formation via deposition mode nucleation onto mineral dust and n-hexane soot samples. J. Geophys. Res., 111 , D16204. doi:10.1029/2005JD006766.

    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., and J. P. D. Abbatt, 2010: Ice nucleation onto Arizona test dust at cirrus temperatures: Effect of temperature and aerosol size on onset relative humidity. J. Phys. Chem., 114A , 935941.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 2005: The theory of ice nucleation by heterogeneous freezing of deliquescent mixed CCN. Part II: Parcel model simulation. J. Atmos. Sci., 62 , 261285.

    • Search Google Scholar
    • Export Citation
  • Kieft, T. L., 1988: Ice nucleation activity in lichens. Appl. Environ. Microbiol., 54 , 16781681.

  • Knopf, D. A., and T. Koop, 2006: Heterogeneous nucleation of ice on surrogates of mineral dust. J. Geophys. Res., 111 , D12201. doi:10.1029/2005JD006894.

    • Search Google Scholar
    • Export Citation
  • Koch, D., and Coauthors, 2009: Evaluation of black carbon estimations in global aerosol models. Atmos. Chem. Phys., 9 , 90019026.

  • Korolev, A., and G. A. Isaac, 2006: Relative humidity in liquid, mixed-phase, and ice clouds. J. Atmos. Sci., 63 , 28652880.

  • Kulkarni, G., and S. Dobbie, 2010: Ice nucleation properties of mineral dust particles: Determination of onset RHi, IN active fraction, nucleation time-lag, and the effect of active sites on contact angles. Atmos. Chem. Phys., 10 , 95105.

    • Search Google Scholar
    • Export Citation
  • Kumai, M., 1961: Snow crystals and the identification of the nuclei in the northern United States of America. J. Atmos. Sci., 18 , 139150.

    • Search Google Scholar
    • Export Citation
  • Kumai, M., and K. E. Francis, 1962: Nuclei in snow and ice crystals on the Greenland ice cap under natural and artificially stimulated conditions. J. Atmos. Sci., 19 , 474481.

    • Search Google Scholar
    • Export Citation
  • Lappalainen, S., M. Nikulin, S. Berg, P. Parikka, E-L. Hintikka, and A-L. Pasanen, 1996: Fusarium toxins and fungi associated with handling of grain on eight Finnish farms. Atmos. Environ., 30 , 30593065.

    • Search Google Scholar
    • Export Citation
  • Levin, Z., and S. A. Yankofsky, 1983: Contact versus immersion freezing of freely suspended droplets by bacterial ice nuclei. J. Climate Appl. Meteor., 22 , 19641966.

    • Search Google Scholar
    • Export Citation
  • Levine, J., 1950: Statistical explanation of spontaneous freezing of water droplets. Tech. Rep. NACA-TN-2234, National Advisory Committee for Aeronautics, 27 pp. [Available online at http://naca.central.cranfield.ac.uk/reports/1950/naca-tn-2234.pdf].

    • Search Google Scholar
    • Export Citation
  • Lindemann, J., H. A. Constantinidou, W. R. Barchet, and C. D. Upper, 1982: Plants as sources of airborne bacteria, including ice nucleation-active bacteria. Appl. Environ. Microbiol., 44 , 10591063.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and J. E. Penner, 2005: Ice nucleation parameterization for global models. Meteor. Z., 14 , 499514.

  • Lohmann, U., 2002: Possible aerosol effects on ice clouds via contact nucleation. J. Atmos. Sci., 59 , 647656.

  • Lohmann, U., and K. Diehl, 2006: Sensitivity studies of the importance of dust ice nuclei for the indirect aerosol effect on stratiform mixed-phase clouds. J. Atmos. Sci., 63 , 968982.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and C. Hoose, 2009: Sensitivity studies of different aerosol indirect effects in mixed-phase clouds. Atmos. Chem. Phys., 9 , 89178934.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., P. Stier, C. Hoose, S. Ferrachat, S. Kloster, E. Roeckner, and J. Zhang, 2007: Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmos. Chem. Phys., 7 , 34253446.

    • Search Google Scholar
    • Export Citation
  • Luond, F., O. Stetzer, A. Welti, and U. Lohmann, 2010: Experimental study on the ice nucleation ability of size selected kaolinite particles in the immersion mode. J. Geophys. Res., 115 , D14201. doi:10.1029/2009JD012959.

    • Search Google Scholar
    • Export Citation
  • Maki, L. R., and K. J. Willoughby, 1978: Bacteria as biogenic sources of freezing nuclei. J. Appl. Meteor., 17 , 10491053.

  • Marcolli, C., S. Gedamke, T. Peter, and B. Zobrist, 2007: Efficiency of immersion mode ice nucleation on surrogates of mineral dust. Atmos. Chem. Phys., 7 , 50815091.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2005: Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles. J. Geophys. Res., 110 , D11210. doi:10.1029/2004JD005169.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2006: Efficiency of the deposition mode ice nucleation on mineral dust particles. Atmos. Chem. Phys., 6 , 30073021.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2008: Heterogeneous ice nucleation activity of bacteria: New laboratory experiments at simulated cloud conditions. Biogeosciences, 5 , 14251435.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21 , 36423659.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. D. Shupe, J. O. Pinto, and J. A. Curry, 2005: Possible roles of ice nucleation mode and ice nuclei depletion in the extended lifetime of Arctic mixed-phase clouds. Geophys. Res. Lett., 32 , L18801. doi:10.1029/2005GL023614.

    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., and T. Koop, 2005: Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quart. J. Roy. Meteor. Soc., 131 , 15391565.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and Coauthors, 2009: Ice nuclei emissions from biomass burning. J. Geophys. Res., 114 , D07209. doi:10.1029/2008JD011532.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., P. J. DeMott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65 , 27572783.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and Coauthors, 2009: Potential impacts from biological aerosols on ensembles of continental clouds simulated numerically. Biogeosciences, 6 , 9871014.

    • Search Google Scholar
    • Export Citation
  • Pitter, R. L., and H. R. Pruppacher, 1973: A wind tunnel investigation of freezing of small water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc., 99 , 540550.

    • Search Google Scholar
    • Export Citation
  • Pouleur, S., C. Richard, J-G. Martin, and H. Antoun, 1992: Ice nucleation activity in Fusarium acuminatum and Fusarium avenaceum. Appl. Environ. Microbiol., 58 , 29602964.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2009: In situ detection of biological particles in cloud ice-crystals. Nat. Geosci., 2 , 398401.

  • Prenni, A. J., and Coauthors, 2007: Can ice-nucleating aerosols affect Arctic seasonal climate? Bull. Amer. Meteor. Soc., 88 , 541550.

    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., P. J. DeMott, D. C. Rogers, S. M. Kreidenweis, G. M. McFarquhar, G. Zhang, and M. R. Poellot, 2009a: Ice nuclei characteristics from M-PACE and their relation to ice formation in clouds. Tellus, 61B , 436448. doi:10.1111/j.1600-0889.2009.00415.x.

    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., and Coauthors, 2009b: Relative roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon basin. Nat. Geosci., 2 , 402405.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Richardson, M. S., and Coauthors, 2007: Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. J. Geophys. Res., 112 , D02209. doi:10.1029/2006JD007500.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., and P. J. DeMott, 1995: Measurements of natural ice nuclei, CCN, and CN in winter clouds. Preprints, Conf. on Cloud Physics, Dallas, TX, Amer. Meteor. Soc. 129–144.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., P. J. DeMott, S. M. Kreidenweis, and Y. Chen, 2001: A continuous-flow diffusion chamber for airborne measurements of ice nuclei. J. Atmos. Oceanic Technol., 18 , 725741.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and V. I. Khvorostyanov, 2008: Cloud effects from boreal forest fire smoke: Evidence for ice nucleation from polarization lidar data and cloud model simulations. Environ. Res. Lett., 3 , 025006. doi:10.1088/1748-9326/3/2/025006.

    • Search Google Scholar
    • Export Citation
  • Schaller, R., and N. Fukuta, 1979: Ice nucleation by aerosol-particles–experimental studies using a wedge-shaped ice thermal-diffusion chamber. J. Atmos. Sci., 36 , 17881802.

    • Search Google Scholar
    • Export Citation
  • Schnell, R. C., and G. Vali, 1973: World-wide source of leaf-derived freezing nuclei. Nature, 246 , 212213.

  • Seland, Ø, T. Iversen, A. Kirkevåg, and T. Storelvmo, 2008: Aerosol–climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings. Tellus, 60A , 459491.

    • Search Google Scholar
    • Export Citation
  • Shilling, J. E., T. J. Fortin, and M. A. Tolbert, 2006: Depositional ice nucleation on crystalline organic and inorganic solids. J. Geophys. Res., 111 , D12204. doi:10.1029/2005JD006664.

    • Search Google Scholar
    • Export Citation
  • Stetzer, O., B. Baschek, F. Lü. önd, and U. Lohmann, 2008: The Zurich Ice Nucleation Chamber (ZINC)—A new instrument to investigate atmospheric ice formation. Aerosol Sci. Technol., 42 , 6474.

    • Search Google Scholar
    • Export Citation
  • Storelvmo, T., J. E. Kristjánsson, S. J. Ghan, A. Kirkevåg, Ø Seland, and T. Iversen, 2006: Predicting cloud droplet number concentration in Community Atmosphere Model (CAM)-Oslo. J. Geophys. Res., 111 , D24208. doi:10.1029/2005JD006300.

    • Search Google Scholar
    • Export Citation
  • Storelvmo, T., J. E. Kristjánsson, and U. Lohmann, 2008a: Aerosol influence on mixed-phase clouds in CAM-Oslo. J. Atmos. Sci., 65 , 32143230.

    • Search Google Scholar
    • Export Citation
  • Storelvmo, T., J. E. Kristjánsson, U. Lohmann, T. Iversen, A. Kirkevåg, and Ø Seland, 2008b: Modeling of the Wegener–Bergeron–Findeisen process—Implications for aerosol indirect effects. Environ. Res. Lett., 3 , 045001. doi:10.1088/1748-9326/3/4/045001; Corrigendum, 5, 019801, doi:10.1088/1748-9326/5/1/019801.

    • Search Google Scholar
    • Export Citation
  • Svensson, E. A., C. Delval, P. von Hessberg, M. S. Johnson, and J. B. C. Pettersson, 2009: Freezing of water droplets colliding with kaolinite particles. Atmos. Chem. Phys., 9 , 42954300.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., and I. Zawadzki, 1997: Biogenic and anthropogenic sources of ice-forming nuclei: A review. Bull. Amer. Meteor. Soc., 78 , 209228.

    • Search Google Scholar
    • Export Citation
  • Targino, A. C., R. Krejci, K. J. Noone, and P. Glantz, 2006: Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment. Atmos. Chem. Phys., 6 , 19771990.

    • Search Google Scholar
    • Export Citation
  • Textor, C., and Coauthors, 2006: Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys., 6 , 17771813.