The Polar Summer Tropopause Inversion Layer

William J. Randel National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by William J. Randel in
Current site
Google Scholar
PubMed
Close
and
Fei Wu National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Fei Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Temperature profiles in polar latitudes during summer reveal a strong and persistent inversion layer associated with the polar summer tropopause. This inversion layer is characterized by a temperature increase of ∼8 K in the first 2–3 km above the tropopause and is observed throughout summer polar latitudes in both hemispheres. Radiosonde and GPS radio occultation temperature observations are used to document characteristics of the inversion layer, including its seasonal variability and modulation by synoptic meteorological systems (cyclones and anticyclones). Previous analyses have suggested a radiative mechanism for formation and maintenance of tropopause inversions, related to water vapor and ozone near the tropopause. Fixed dynamical heating (FDH) calculations are used herein to investigate this behavior in polar regions, based on observed seasonally varying profiles of water vapor (from satellite measurements) and ozone (from ozonesondes). Water vapor exhibits a strong seasonal cycle throughout the troposphere and lowest stratosphere, with a pronounced summer maximum, which is primarily a result of the seasonally varying tropospheric temperatures. The FDH calculations suggest that enhanced summer water vapor leads to strong radiative cooling in a narrow layer near the tropopause, so that the radiative influence of water vapor provides a primary mechanism for the summer inversion layer.

Corresponding author address: William J. Randel, NCAR, P.O. Box 3000, Boulder, CO 80307–3000. Email: randel@ucar.edu

Abstract

Temperature profiles in polar latitudes during summer reveal a strong and persistent inversion layer associated with the polar summer tropopause. This inversion layer is characterized by a temperature increase of ∼8 K in the first 2–3 km above the tropopause and is observed throughout summer polar latitudes in both hemispheres. Radiosonde and GPS radio occultation temperature observations are used to document characteristics of the inversion layer, including its seasonal variability and modulation by synoptic meteorological systems (cyclones and anticyclones). Previous analyses have suggested a radiative mechanism for formation and maintenance of tropopause inversions, related to water vapor and ozone near the tropopause. Fixed dynamical heating (FDH) calculations are used herein to investigate this behavior in polar regions, based on observed seasonally varying profiles of water vapor (from satellite measurements) and ozone (from ozonesondes). Water vapor exhibits a strong seasonal cycle throughout the troposphere and lowest stratosphere, with a pronounced summer maximum, which is primarily a result of the seasonally varying tropospheric temperatures. The FDH calculations suggest that enhanced summer water vapor leads to strong radiative cooling in a narrow layer near the tropopause, so that the radiative influence of water vapor provides a primary mechanism for the summer inversion layer.

Corresponding author address: William J. Randel, NCAR, P.O. Box 3000, Boulder, CO 80307–3000. Email: randel@ucar.edu

Save
  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 Mission: Early results. Bull. Amer. Meteor. Soc., 89 , 313333.

  • Bell, S. W., and M. A. Geller, 2008: Tropopause inversion layer: Seasonal and latitudinal variations and representation in standard radiosonde data and global models. J. Geophys. Res., 113 , D05109. doi:10.1029/2007JD009022.

    • Search Google Scholar
    • Export Citation
  • Bernath, P. F., and Coauthors, 2005: Atmospheric Chemistry Experiment (ACE): Mission overview. Geophys. Res. Lett., 32 , L15S01. doi:10.1029/2005GL022386.

    • Search Google Scholar
    • Export Citation
  • Birner, T., 2006: Fine-scale structure of the extratropical tropopause region. J. Geophys. Res., 111 , D04104. doi:10.1029/2005JD006301.

  • Birner, T., 2010: Residual circulation and tropopause structure. J. Atmos. Sci., 67 , 25822600.

  • Birner, T., A. Dörnbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes? Geophys. Res. Lett., 29 , 1700. doi:10.1029/2002GL015142.

    • Search Google Scholar
    • Export Citation
  • Fioletov, V. E., and T. G. Shepherd, 2005: Summertime total ozone variations over middle and polar latitudes. Geophys. Res. Lett., 32 , L04807. doi:10.1029/2004GL022080.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and K. P. Shine, 2002: Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29 , 1086. doi:10.1029/2001GL013909.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2010: Multi-model assessment of the upper troposphere and lower stratosphere: Tropics and trends. J. Geophys. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Grise, K., D. Thompson, and T. Birner, 2010: A global survey of static stability in the stratosphere and upper troposphere. J. Climate, 23 , 22752292.

    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., C. D. Boone, G. L. Manney, and K. A. Walker, 2009: A global view of the extratropical tropopause transition layer from Atmospheric Chemistry Experiment Fourier Transform Spectrometer O3, H2O, and CO. J. Geophys. Res., 114 , D00B11. doi:10.1029/2008JD009984.

    • Search Google Scholar
    • Export Citation
  • Hoor, P., H. Fischer, L. Lange, J. Lelieveld, and D. Brunner, 2002: Seasonal variations of a mixing layer in the lowermost stratosphere as identified by the CO–O3 correlation from in situ measurements. J. Geophys. Res., 107 , 4044. doi:10.1029/2000JD000289.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • Kunz, A., P. Konopka, R. Müller, L. L. Pan, C. Schiller, and F. Rohrer, 2009: High static stability in the mixing layer above the extratropical tropopause. J. Geophys. Res., 114 , D16305. doi:10.1029/2009JD011840.

    • Search Google Scholar
    • Export Citation
  • Pan, L. L., W. J. Randel, B. L. Gary, M. J. Mahoney, and E. J. Hintsa, 2004: Definitions and sharpness of the extratropical tropopause: A trace gas perspective. J. Geophys. Res., 109 , D23103. doi:10.1029/2004JD004982.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, A. Gettelman, J. M. Russell, J. M. Zawodny, and S. J. Oltmans, 2001: Seasonal variation of water vapor in the lower stratosphere observed in Halogen Occultation Experiment data. J. Geophys. Res., 106 , 1431314326.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and P. Forster, 2007: The extratropical tropopause inversion layer: Global observations with GPS data, and a radiative forcing mechanism. J. Atmos. Sci., 64 , 44894496.

    • Search Google Scholar
    • Export Citation
  • Schmidt, T., S. Heise, J. Wickert, G. Beyerle, and C. Reigber, 2005: GPS radio occultation with CHAMP and SAC-C: Global monitoring of thermal tropopause parameters. Atmos. Chem. Phys., 5 , 14731488.

    • Search Google Scholar
    • Export Citation
  • Son, S-W., and L. M. Polvani, 2007: Dynamical formation of an extra-tropical tropopause inversion layer in a relatively simple general circulation model. Geophys. Res. Lett., 34 , L17806. doi:10.1029/2007GL030564.

    • Search Google Scholar
    • Export Citation
  • Tomikawa, Y., Y. Nishimura, and T. Yamanouchi, 2009: Characteristics of tropopause and tropopause inversion layer in the polar region. SOLA, 5 , 144144. doi:10.2151/sola.2009-036.

    • Search Google Scholar
    • Export Citation
  • Wirth, V., 2003: Static stability in the extratropical tropopause region. J. Atmos. Sci., 60 , 13951409.

  • Wirth, V., 2004: A dynamical mechanism for tropopause sharpening. Meteor. Z., 13 , 477484.

  • Wirth, V., and T. Szabo, 2007: Sharpness of the extratropical tropopause in baroclinic life cycle experiments. Geophys. Res. Lett., 34 , L02809. doi:10.1029/2006GL028369.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., and K. P. Hoinka, 2001: The tropopause in the polar regions. J. Climate, 14 , 31173139.

  • Zängl, G., and V. Wirth, 2002: Synoptic-scale variability of the polar and subpolar tropopause: Data analysis and idealized PV inversions. Quart. J. Roy. Meteor. Soc., 128 , 23012315.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 785 540 155
PDF Downloads 260 69 8