Transient Dynamics of Nonsymmetric Perturbations versus Symmetric Instability in Baroclinic Zonal Shear Flows

G. R. Mamatsashvili Institute for Astronomy, University of Edinburgh, Edinburgh, United Kingdom, and Georgian National Astrophysical Observatory, The Ilia State University, Tbilisi, Georgia

Search for other papers by G. R. Mamatsashvili in
Current site
Google Scholar
PubMed
Close
,
V. S. Avsarkisov M. Nodia Institute of Geophysics, and Georgian National Astrophysical Observatory, The Ilia State University, Tbilisi, Georgia

Search for other papers by V. S. Avsarkisov in
Current site
Google Scholar
PubMed
Close
,
G. D. Chagelishvili M. Nodia Institute of Geophysics, and Georgian National Astrophysical Observatory, The Ilia State University, Tbilisi, Georgia

Search for other papers by G. D. Chagelishvili in
Current site
Google Scholar
PubMed
Close
,
R. G. Chanishvili M. Nodia Institute of Geophysics, and Georgian National Astrophysical Observatory, The Ilia State University, Tbilisi, Georgia

Search for other papers by R. G. Chanishvili in
Current site
Google Scholar
PubMed
Close
, and
M. V. Kalashnik SPA Typhoon, Obninsk, Kaluga, Russia

Search for other papers by M. V. Kalashnik in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The linear dynamics of symmetric and nonsymmetric perturbations in unbounded zonal inviscid flows with a constant vertical shear of velocity, when a fluid is incompressible and density is stably stratified along the vertical and meridional directions, is investigated. A small–Richardson number Ri ≲ 1 and large–Rossby number Ro ≳ 1 regime is considered, which satisfies the condition for symmetric instability. Specific features of this dynamics are closely related to the nonnormality of linear operators in shear flows and are well interpreted in the framework of the nonmodal approach by tracing the linear dynamics of spatial Fourier harmonics (Kelvin modes) of perturbations in time. The roles of stable stratification, the Coriolis parameter, and vertical shear in the dynamics of perturbations are analyzed. Classification of perturbations into two types or modes—vortex (i.e., quasigeostrophic balanced motions) and inertia–gravity wave—is made according to the value of potential vorticity. The emerging picture of the (linear) transient dynamics for these two modes at Ri ≲ 1 and Ro ≳ 1 indicates that vortex mode perturbations are able to gain basic flow energy and undergo exponential transient amplification and in this process generate inertia–gravity waves. Transient growth of the vortex mode and, consequently, the effectiveness of the wave generation both increase with decreasing Ri and increasing Ro. This linear coupling of perturbation modes is, in general, specific to shear flows but is not fully appreciated yet.

A parallel analysis of the transient dynamics of nonsymmetric perturbations versus symmetric instability is also presented. It is shown that the nonnormality-induced transient growth of nonsymmetric perturbations can prevail over the symmetric instability for a wide range of Ri and Ro. The current analysis suggests that the dynamical activity of fronts and jet streaks at Ri ≲ 1 and Ro ≳ 1 should be determined by nonsymmetric perturbations rather than by symmetric ones, as was accepted in earlier papers. It is noteworthy that the transient growth of perturbations is asymmetric in the wavenumber space—the constant phase plane of maximally amplified perturbations is inclined in a direction northeast to the zonal one and the inclination angle is different for different Ri and Ro.

Corresponding author address: George Mamatsashvili, Institute for Astronomy, Blackford Hill, Edinburgh EH9 3HJ, United Kingdom. Email: grm@roe.ac.uk

Abstract

The linear dynamics of symmetric and nonsymmetric perturbations in unbounded zonal inviscid flows with a constant vertical shear of velocity, when a fluid is incompressible and density is stably stratified along the vertical and meridional directions, is investigated. A small–Richardson number Ri ≲ 1 and large–Rossby number Ro ≳ 1 regime is considered, which satisfies the condition for symmetric instability. Specific features of this dynamics are closely related to the nonnormality of linear operators in shear flows and are well interpreted in the framework of the nonmodal approach by tracing the linear dynamics of spatial Fourier harmonics (Kelvin modes) of perturbations in time. The roles of stable stratification, the Coriolis parameter, and vertical shear in the dynamics of perturbations are analyzed. Classification of perturbations into two types or modes—vortex (i.e., quasigeostrophic balanced motions) and inertia–gravity wave—is made according to the value of potential vorticity. The emerging picture of the (linear) transient dynamics for these two modes at Ri ≲ 1 and Ro ≳ 1 indicates that vortex mode perturbations are able to gain basic flow energy and undergo exponential transient amplification and in this process generate inertia–gravity waves. Transient growth of the vortex mode and, consequently, the effectiveness of the wave generation both increase with decreasing Ri and increasing Ro. This linear coupling of perturbation modes is, in general, specific to shear flows but is not fully appreciated yet.

A parallel analysis of the transient dynamics of nonsymmetric perturbations versus symmetric instability is also presented. It is shown that the nonnormality-induced transient growth of nonsymmetric perturbations can prevail over the symmetric instability for a wide range of Ri and Ro. The current analysis suggests that the dynamical activity of fronts and jet streaks at Ri ≲ 1 and Ro ≳ 1 should be determined by nonsymmetric perturbations rather than by symmetric ones, as was accepted in earlier papers. It is noteworthy that the transient growth of perturbations is asymmetric in the wavenumber space—the constant phase plane of maximally amplified perturbations is inclined in a direction northeast to the zonal one and the inclination angle is different for different Ri and Ro.

Corresponding author address: George Mamatsashvili, Institute for Astronomy, Blackford Hill, Edinburgh EH9 3HJ, United Kingdom. Email: grm@roe.ac.uk

Save
  • Antar, B. N., and W. W. Fowlis, 1982: Symmetric baroclinic instability of a Hadley cell. J. Atmos. Sci., 39 , 12801289.

  • Baggett, J. S., T. A. Driscoll, and L. N. Trefethen, 1995: A mostly linear model of transition to turbulence. Phys. Fluids, 7 , 833838. doi:10.1063/1.868606.

    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., and P. J. Ioannou, 2007: Momentum and energy transport by gravity waves in stochastically driven stratified flows. Part I: Radiation of gravity waves from a shear layer. J. Atmos. Sci., 64 , 15091529.

    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., and B. F. Farrell, 2008: Momentum and energy transport by gravity waves in stochastically driven stratified flows. Part II: Radiation of gravity waves from a Gaussian jet. J. Atmos. Sci., 65 , 23082325.

    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., and B. F. Farrell, 2009a: Gravity waves in a horizontal shear flow. Part I: Growth mechanisms in the absence of potential vorticity perturbations. J. Phys. Oceanogr., 39 , 481496.

    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., and B. F. Farrell, 2009b: Gravity waves in a horizontal shear flow. Part II: Interaction between gravity waves and potential vorticity perturbations. J. Phys. Oceanogr., 39 , 497511.

    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., P. J. Ioannou, and G. E. Kefaliakos, 2001: The emergence of coherent structures in stratified shear flow. J. Atmos. Sci., 58 , 27902806.

    • Search Google Scholar
    • Export Citation
  • Bartello, P., 1995: Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci., 52 , 44104428.

  • Bennetts, P. A., and B. J. Hoskins, 1979: Conditional symmetric instability—A possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105 , 945962.

    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1972: Geostrophic adjustment. Rev. Geophys. Space Phys., 10 , 485528.

  • Bosart, L. F., W. E. Bracken, and A. Seimon, 1998: A study of cyclone mesoscale structure with emphasis on a large-amplitude inertia–gravity wave. Mon. Wea. Rev., 126 , 14971527.

    • Search Google Scholar
    • Export Citation
  • Brethouwer, G., P. Billant, E. Lindborg, and J-M. Chomaz, 2007: Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech., 585 , 343368.

    • Search Google Scholar
    • Export Citation
  • Butler, K. M., and B. F. Farrell, 1992: Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids, 4A , 16371650.

  • Butler, K. M., and B. F. Farrell, 1993: Optimal perturbations and streak spacing in wall-bounded turbulent shear flows. Phys. Fluids, 5A , 774777.

    • Search Google Scholar
    • Export Citation
  • Chagelishvili, G. D., 2002: New linear mechanisms of acoustic wave generation in smooth shear flows (nonmodal study). Sound–Flow Interactions, Y. Auregan et al., Eds., Lecture Notes in Physics Series, Vol. 586, Springer, 210–237.

    • Search Google Scholar
    • Export Citation
  • Chagelishvili, G. D., A. G. Tevzadze, G. Bodo, and S. S. Moiseev, 1997: Linear mechanism of wave emergence from vortices in smooth shear flows. Phys. Rev. Lett., 79 , 31783181.

    • Search Google Scholar
    • Export Citation
  • Chagelishvili, G. D., R. G. Chanishvili, T. S. Hristov, and J. G. Lominadze, 2002: A turbulence model in unbounded smooth shear flows: The weak turbulence approach. J. Exper. Theor. Phys., 94 , 434445.

    • Search Google Scholar
    • Export Citation
  • Chapman, S. J., 2002: Subcritical transition in channel flows. J. Fluid Mech., 451 , 3597.

  • Cho, H-R., T. G. Shepherd, and V. A. Vladimirov, 1993: Application of the direct Liapunov method to the problem of symmetric stability in the atmosphere. J. Atmos. Sci., 50 , 822836.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and W. O. Criminale, 1986: Evolution of wavelike disturbances in shear flows: A class of exact solutions of the Navier–Stokes equations. Proc. Roy. Soc., 406A , 1326.

    • Search Google Scholar
    • Export Citation
  • Criminale, W. O., and P. G. Drazin, 1990: The evolution of linearized perturbations of parallel flows. Stud. Appl. Math., 83 , 123157.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 , 3352.

  • Emanuel, K. A., 1979: Inertial instability and mesoscale convective systems. Part I: Linear theory of inertial instability in rotating viscous fluids. J. Atmos. Sci., 36 , 24252449.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1987: Developing disturbances in shear. J. Atmos. Sci., 44 , 21912199.

  • Farrell, B. F., 1988: Optimal excitation of perturbations in viscous shear flow. Phys. Fluids, 31 , 20932102.

  • Farrell, B. F., and P. J. Ioannou, 1993a: Optimal excitation of three-dimensional perturbations in viscous constant shear flow. Phys. Fluids, 5A , 13901400.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1993b: Perturbation growth in shear flow exhibits universality. Phys. Fluids, 5A , 22982300.

  • Farrell, B. F., and P. J. Ioannou, 1993c: Transient development of perturbations in stratified shear flow. J. Atmos. Sci., 50 , 22012214.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1996: Generalized stability theory. Part I: Autonomous operators. J. Atmos. Sci., 53 , 20252040.

  • Farrell, B. F., and P. J. Ioannou, 1998: Perturbation structure and spectra in turbulent channel flows. Theor. Comput. Fluid Dyn., 11 , 237250.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2000: Transient and asymptotic growth of two-dimensional perturbations in viscous compressible shear flow. Phys. Fluids, 12 , 30213028.

    • Search Google Scholar
    • Export Citation
  • Fjørtoft, R., 1950: Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic circular vortex. Geofys. Publ., 17 , 152.

    • Search Google Scholar
    • Export Citation
  • Foster, R. C., 1997: Structure and energetics of optimal Ekman layer perturbations. J. Fluid Mech., 333 , 97123.

  • Gebhardt, T., and S. Grossmann, 1994: Chaos transition despite linear stability. Phys. Rev. E, 50 , 37053711.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Grossmann, S., 2000: The onset of shear flow turbulence. Rev. Mod. Phys., 72 , 603618.

  • Gu, W., Q. Xu, and R. Wu, 1998: Three-dimensional instability of nonlinear viscous symmetric circulations. J. Atmos. Sci., 55 , 31483158.

    • Search Google Scholar
    • Export Citation
  • Guest, F. M., M. J. Reeder, C. J. Marks, and D. J. Karoly, 2000: Inertia–gravity waves observed in the lower stratosphere over Macquarie Island. J. Atmos. Sci., 57 , 737752.

    • Search Google Scholar
    • Export Citation
  • Gustavsson, L. H., 1991: Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech., 224 , 241260.

  • Heifetz, E., and B. F. Farrell, 2003: Generalized stability of nongeostrophic baroclinic shear flow. Part I: Large Richardson number regime. J. Atmos. Sci., 60 , 20832100.

    • Search Google Scholar
    • Export Citation
  • Heifetz, E., and B. F. Farrell, 2007: Generalized stability of nongeostrophic baroclinic shear flow. Part II: Intermediate Richardson number regime. J. Atmos. Sci., 64 , 43664382.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1974: The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc., 100 , 480482.

    • Search Google Scholar
    • Export Citation
  • Kalashnik, M. V., and P. N. Svirkunov, 1996: On the symmetric stability of the states of cyclostrophic and geostrophic balance in the stratified media. Dokl. Acad. Nauk Russ., 348 , 811813.

    • Search Google Scholar
    • Export Citation
  • Kalashnik, M. V., and P. N. Svirkunov, 1998: On definition of cyclostrophic (geostrophic) states and their stability. Russ. Meteor., 4 , 4252.

    • Search Google Scholar
    • Export Citation
  • Kalashnik, M. V., G. R. Mamatsashvili, G. D. Chagelishvili, and J. G. Lominadze, 2006: Linear dynamics of non-symmetric perturbations in geostrophic horizontal shear flows. Quart. J. Roy. Meteor. Soc., 132 , 505518.

    • Search Google Scholar
    • Export Citation
  • Kaplan, M. L., S. E. Koch, Y-L. Lin, R. P. Weglarz, and R. A. Rozumalski, 1997: Numerical simulations of a gravity wave event over CCOPE. Part 1: The role of geostrophic adjustment in mesoscale jetlet formation. Mon. Wea. Rev., 125 , 11851211.

    • Search Google Scholar
    • Export Citation
  • Kelvin, L., 1887: Stability of fluid motion: Rectilinear motion of viscous fluid between two plates. Philos. Mag., 24 , 188196.

  • Khalil, H., 2002: Nonlinear Systems. 3rd ed. Prentice Hall, 750 pp.

  • Koch, S. E., and P. B. Dorian, 1988: A mesoscale gravity wave event observed during CCOPE. Part III: Wave environment and probable source mechanisms. Mon. Wea. Rev., 116 , 25702592.

    • Search Google Scholar
    • Export Citation
  • Lelong, M-P., and M. A. Sundermeyer, 2005: Geostrophic adjustment of an isolated diapycnal mixing event and its implications for small-scale lateral dispersion. J. Phys. Oceanogr., 35 , 23522367.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., and G. Brethouwer, 2007: Stratified turbulence forced in rotational and divergent modes. J. Fluid Mech., 586 , 83108.

  • Lott, F., 1997: The transient emission of propagating gravity waves by a stably stratified shear layer. Quart. J. Roy. Meteor. Soc., 123 , 16031619.

    • Search Google Scholar
    • Export Citation
  • Lott, F., R. Plougonven, and J. Vanneste, 2010: Gravity waves generated by sheared potential vorticity anomalies. J. Atmos. Sci., 67 , 157170.

    • Search Google Scholar
    • Export Citation
  • Lu, W., and H. Shao, 2003: Generalized nonlinear subcritical symmetric instability. Adv. Atmos. Sci., 20 , 623630.

  • Miller, T. L., 1984: The structures and energetics of fully nonlinear symmetric baroclinic waves. J. Fluid Mech., 142 , 343362.

  • Miller, T. L., 1985: On the energetics and nonhydrostatic aspects of symmetric baroclinic instability. J. Atmos. Sci., 42 , 203211.

  • Miller, T. L., and B. N. Antar, 1986: Viscous nongeostrophic baroclinic instability. J. Atmos. Sci., 43 , 329338.

  • Molemaker, M. J., J. C. McWilliams, and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35 , 15051517.

    • Search Google Scholar
    • Export Citation
  • Mu, M., T. G. Shepherd, and K. Swanson, 1996: On nonlinear symmetric stability and the nonlinear saturation of symmetric instability. J. Atmos. Sci., 53 , 29182923.

    • Search Google Scholar
    • Export Citation
  • Mu, M., V. Vladimirov, and Y-H. Wu, 1999: Energy–Casimir and energy–Lagrange methods in the study of nonlinear symmetric stability problems. J. Atmos. Sci., 56 , 400411.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1988: Scale selection of baroclinic instability—Effects of stratification and nongeostrophy. J. Atmos. Sci., 45 , 32533268.

    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1949: On the question of geostrophic wind. Izv. Acad. Nauk. S.S.S.R., 13 , 281306.

  • Olafsdottir, E. I., A. B. O. Daalhuis, and J. Vanneste, 2008: Inertia-gravity-wave radiation by a sheared vortex. J. Fluid Mech., 596 , 169189.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1966: On the stability of the baroclinic circular vortex: A sufficient criterion for instability. J. Atmos. Sci., 23 , 4353.

    • Search Google Scholar
    • Export Citation
  • Pavelin, E., J. A. Whiteway, and G. Vaughan, 2001: Observation of gravity wave generation and breaking in the lowermost stratosphere. J. Geophys. Res., 106 , 51735180.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Plougonven, R., H. Teitelbaum, and V. Zeitlin, 2003: Inertia gravity wave generation by the tropospheric midlatitude jet as given by the fronts and Atlantic Storm-Track Experiment radio soundings. J. Geophys. Res., 108 , 4686. doi:10.1029/2003JD003535.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., D. J. Muraki, and C. Snyder, 2005: A baroclinic instability that couples balanced motions and gravity waves. J. Atmos. Sci., 62 , 15451559.

    • Search Google Scholar
    • Export Citation
  • Reddy, S. C., and D. S. Henningson, 1993: Energy growth in viscous channel flows. J. Fluid Mech., 252 , 209238.

  • Reddy, S. C., P. J. Schmid, and D. S. Henningson, 1993: Pseudospectra of the Orr–Sommerfeld operator. SIAM J. Appl. Math., 53 , 1547.

    • Search Google Scholar
    • Export Citation
  • Reshotko, E., 2001: Transient growth: A factor in bypass transition. Phys. Fluids, 13 , 10671075.

  • Riley, J. J., and M-P. Lelong, 2000: Fluid motions in the presence of strong stable stratification. Annu. Rev. Fluid Mech., 32 , 613657.

    • Search Google Scholar
    • Export Citation
  • Riley, J. J., and E. Lindborg, 2008: Stratified turbulence: A possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci., 65 , 24162424.

    • Search Google Scholar
    • Export Citation
  • Schmid, P. J., 2007: Nonmodal stability theory. Annu. Rev. Fluid Mech., 39 , 129162.

  • Schmid, P. J., and D. Henningson, 2001: Stability and Transition in Shear Flows. Springer-Verlag, 556 pp.

  • Stone, P. H., 1966: On nongeostrophic baroclinic stability. J. Atmos. Sci., 23 , 390400.

  • Stone, P. H., S. Hess, R. Hadlock, and P. Ray, 1969: Preliminary results of experiments with symmetric baroclinic instabilities. J. Atmos. Sci., 26 , 991996.

    • Search Google Scholar
    • Export Citation
  • Trefethen, L. N., A. E. Trefethen, S. C. Reddy, and T. A. Driscoll, 1993: Hydrodynamic stability without eigenvalues. Science, 261 , 578584.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and S. E. Koch, 1987: The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon. Wea. Rev., 115 , 721729.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., P. J. Kocin, R. A. Petersen, C. H. Wash, and K. F. Brill, 1984: The Presidents’ Day cyclone of 18–19 February 1979: Synoptic overview and analysis of the subtropical jet streak influencing the pre-cyclogenetic period. Mon. Wea. Rev., 112 , 3155.

    • Search Google Scholar
    • Export Citation
  • Vanneste, J., 2008: Exponential smallness of inertia–gravity wave generation at small Rossby number. J. Atmos. Sci., 65 , 16221637.

  • Vanneste, J., and I. Yavneh, 2004: Exponentially small inertia–gravity waves and the breakdown of quasigeostrophic balance. J. Atmos. Sci., 61 , 211223.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and P. Bartello, 2004: Stratified turbulence dominated by vortical motion. J. Fluid Mech., 517 , 281308.

  • Waite, M. L., and P. Bartello, 2005: Stratified turbulence generated by internal gravity waves. J. Fluid Mech., 546 , 313339.

  • Waite, M. L., and P. Bartello, 2006: The transition from geostrophic to stratified turbulence. J. Fluid Mech., 568 , 89108.

  • Wakimoto, R. M., and B. L. Bosart, 2000: Airborne radar observations of a cold front during FASTEX. Mon. Wea. Rev., 128 , 24472470.

  • Wakimoto, R. M., and B. L. Bosart, 2001: Airborne radar observations of a warm front during FASTEX. Mon. Wea. Rev., 129 , 254274.

  • Weber, J. E., 1980: Symmetric instability of stratified geostrophic flow. Tellus, 32 , 176185.

  • Xu, Q., 1986a: Generalized energetics for linear and nonlinear symmetric instabilities. J. Atmos. Sci., 43 , 972984.

  • Xu, Q., 1986b: Conditional symmetric instability and mesoscale rainbands. Quart. J. Roy. Meteor. Soc., 112 , 315334.

  • Yoshida, Z., 2005: Kinetic theory for non-Hermitian dynamics of waves in shear flow. Phys. Plasmas, 12 , 024503. doi:10.1063/1.1849799.

  • Zack, J. W., and M. L. Kaplan, 1987: Numerical simulations of the subsynoptic features associated with the AVE-SESAME 1 case. Part I: The preconvective environment. Mon. Wea. Rev., 115 , 23672394.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 255 63 10
PDF Downloads 121 40 5