Convectively Coupled Waves in a Sheared Environment

Ying Han Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada, and National Meteorological Centre, Chinese Meteorological Administration, Beijing, China

Search for other papers by Ying Han in
Current site
Google Scholar
PubMed
Close
and
Boualem Khouider Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Boualem Khouider in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A linear stability analysis, about a radiative–convective equilibrium in a sheared environment, on an equatorial beta plane, for a simple multicloud model for organized tropical convection is presented here. Both vertical/baroclinic and meridional/barotropic zonal wind shears are considered separately in a parameter regime for which the shear-free multicloud model exhibits synoptic-scale instability of Kelvin and n = 0 eastward inertio-gravity [eastward mixed Rossby–gravity (MRG)] waves only, with moderate growth rates. The maximum growth rates appear to increase significantly with the strength of the background wind shear, and new wave instabilities appear and/or disappear depending on the strength and type of the wind shear. It is found here that both high- and low-level vertical shears have a strong impact on the stability of convectively coupled waves (CCWs), consistent with the fact that the multicloud instability mechanism is controlled by both stratiform heating and low-level moisture and congestus heating. Typically, vertical shears with high-level easterly wind destabilize westward moving waves and stabilize eastward waves, whereas westerly winds aloft and on bottom tend to destabilize eastward moving and stabilize westward moving waves. In the mixed situation of high-level easterlies and low-level westerlies both eastward and westward waves are unstable, while in the case of high-level westerlies and low-level easterlies only eastward waves are unstable. In the presence of a barotropic/meridional shear, synoptic-scale convectively coupled westward MRG and Rossby waves emerge, when the shear strength is large enough, due essentially to pure shear instability of the dry dynamics. The meridional shear has also an important impact on the horizontal structure of the waves. Owing to the meridional shear, the Kelvin wave displays a nonzero meridional velocity that induces a significant contribution toward the horizontal convergence. The two-day waves adopt a crescentlike shape while the westward MRG, and somewhat the Rossby waves, become less trapped in the vicinity of the equator.

Corresponding author address: Dr. Boualem Khouider, Dept. of Mathematics and Statistics, University of Victoria, P.O. Box 3045, STN CSC Victoria BC V8W 3P4, Canada. Email: khouider@math.uvic.ca

Abstract

A linear stability analysis, about a radiative–convective equilibrium in a sheared environment, on an equatorial beta plane, for a simple multicloud model for organized tropical convection is presented here. Both vertical/baroclinic and meridional/barotropic zonal wind shears are considered separately in a parameter regime for which the shear-free multicloud model exhibits synoptic-scale instability of Kelvin and n = 0 eastward inertio-gravity [eastward mixed Rossby–gravity (MRG)] waves only, with moderate growth rates. The maximum growth rates appear to increase significantly with the strength of the background wind shear, and new wave instabilities appear and/or disappear depending on the strength and type of the wind shear. It is found here that both high- and low-level vertical shears have a strong impact on the stability of convectively coupled waves (CCWs), consistent with the fact that the multicloud instability mechanism is controlled by both stratiform heating and low-level moisture and congestus heating. Typically, vertical shears with high-level easterly wind destabilize westward moving waves and stabilize eastward waves, whereas westerly winds aloft and on bottom tend to destabilize eastward moving and stabilize westward moving waves. In the mixed situation of high-level easterlies and low-level westerlies both eastward and westward waves are unstable, while in the case of high-level westerlies and low-level easterlies only eastward waves are unstable. In the presence of a barotropic/meridional shear, synoptic-scale convectively coupled westward MRG and Rossby waves emerge, when the shear strength is large enough, due essentially to pure shear instability of the dry dynamics. The meridional shear has also an important impact on the horizontal structure of the waves. Owing to the meridional shear, the Kelvin wave displays a nonzero meridional velocity that induces a significant contribution toward the horizontal convergence. The two-day waves adopt a crescentlike shape while the westward MRG, and somewhat the Rossby waves, become less trapped in the vicinity of the equator.

Corresponding author address: Dr. Boualem Khouider, Dept. of Mathematics and Statistics, University of Victoria, P.O. Box 3045, STN CSC Victoria BC V8W 3P4, Canada. Email: khouider@math.uvic.ca

Save
  • Biello, J., and A. J. Majda, 2003: The effect of meridional and vertical shear on the interaction of equatorial baroclinic and barotropic Rossby waves. Stud. Appl. Math., 112 , 341390.

    • Search Google Scholar
    • Export Citation
  • Biello, J., and A. J. Majda, 2005: A new multi-scale model for the Madden–Julian oscillation. J. Atmos. Sci., 62 , 16941721.

  • Bond, N., and G. Vecchi, 2003: The influence of the Madden–Julian oscillation on precipitation in Oregon and Washington. Wea. Forecasting, 18 , 600613.

    • Search Google Scholar
    • Export Citation
  • Dias, J., and O. Pauluis, 2009: Convectively coupled waves propagating along an equatorial ITCZ. J. Atmos. Sci., 66 , 22372255.

  • Dunkerton, T. J., and F. X. Crum, 1995: Eastward propagating 2- to 15-day equatorial convection and its relation to the tropical intraseasonal oscillation. J. Geophys. Res., 100 , 2578125790.

    • Search Google Scholar
    • Export Citation
  • Ferguson, J., B. Khouider, and M. Namazi, 2009: Two-way interactions between equatorially trapped waves and the barotropic flow. Chin. Ann. Math., 30B , 539568.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., A. J. Majda, and O. Pauluis, 2004: Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit. Commun. Math. Sci., 2 , 591626.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Z., and D. J. Raymond, 2002: Large-scale modes of a nonrotating atmosphere with water vapor and cloud–radiation feedbacks. J. Atmos. Sci., 59 , 16691679.

    • Search Google Scholar
    • Export Citation
  • Gill, A., 1980: Some simple solutions for heat-induced tropical circulations. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Haertel, P. T., and R. H. Johnson, 1998: Two-day disturbances in the equatorial western Pacific. Quart. J. Roy. Meteor. Soc., 124 , 615636.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J. Atmos. Sci., 61 , 27072721.

  • Haertel, P. T., G. N. Kiladis, A. Denno, and T. M. Rickenbach, 2009: Vertical-mode decompositions of 2-day waves and the Madden–Julian oscillation. J. Atmos. Sci., 65 , 813833.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1994: Organization of convection within the Madden–Julian oscillation. J. Geophys. Res., 99 , 80738083.

    • Search Google Scholar
    • Export Citation
  • Jones, C., D. Waliser, K. Lau, and W. Stern, 2004: The Madden–Julian oscillation and its impact on Northern Hemisphere weather predictability. Mon. Wea. Rev., 132 , 14621471.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., and P. Silva Dias, 1986: Response of planetary waves to stationary tropical heating in a global atmosphere with meridional and vertical shear. J. Atmos. Sci., 43 , 18931911.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2005: A non-oscillatory balanced scheme for an idealized tropical climate model. Part II: Nonlinear coupling and moisture effects. Theor. Comput. Fluid Dyn., 19 , 355375.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63 , 13081323.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2008a: Multicloud models for organized tropical convection: Enhanced congestus heating. J. Atmos. Sci., 65 , 895914.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2008b: Equatorial convectively coupled waves in a simple multicloud model. J. Atmos. Sci., 65 , 33763397.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. Straub, and P. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62 , 27902809.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47 , RG2003. doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Lin, J-L., and B. Mapes, 2004: Wind shear effects on cloud–radiation feedback in the Western Pacific warm pool. Geophys. Res. Lett., 31 , L16118. doi:10.1029/2004GL020199.

    • Search Google Scholar
    • Export Citation
  • Lin, J-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19 , 26652690.

    • Search Google Scholar
    • Export Citation
  • Lin, J-L., M-I. Lee, D. Kim, I-S. Kang, and D. M. Frierson, 2008: The impacts of convective parametrization and moisture triggering on AGCM-simulated convectively coupled equatorial waves. J. Climate, 21 , 883909.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and R. H. Johnson, 1996: Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53 , 695715.

    • Search Google Scholar
    • Export Citation
  • Liu, P., and Coauthors, 2009: Tropical intraseasonal variability in the MRI-20 km 60L AGCM. J. Climate, 22 , 20062022.

  • Madden, R., and P. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Majda, A., 2003: Introduction to PDEs and Waves for the Atmosphere and Ocean. American Mathematical Society, 234 pp.

  • Majda, A., and B. Khouider, 2001: A numerical strategy for efficient modeling of the equatorial wave guide. Proc. Natl. Acad. Sci. USA, 98 , 13411346.

    • Search Google Scholar
    • Export Citation
  • Majda, A., and S. N. Stechmann, 2009: A simple dynamical model with features of convective momentum transport. J. Atmos. Sci., 66 , 373392.

    • Search Google Scholar
    • Export Citation
  • Majda, A., B. Khouider, G. N. Kiladis, K. H. Straub, and M. G. Shefter, 2004: A model for convectively coupled tropical waves: Nonlinearity, rotation, and comparison with observations. J. Atmos. Sci., 61 , 21882205.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2542.

  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variation over the western Pacific. J. Meteor. Soc. Japan, 66 , 823839.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and J. Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytical theory. J. Atmos. Sci., 51 , 18761894.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., D. M. Frierson, and A. J. Majda, 2008: Precipitation fronts and the reflection and transmission of tropical disturbances. Quart. J. Roy. Meteor. Soc., 134 , 913930.

    • Search Google Scholar
    • Export Citation
  • Robe, F. R., and K. A. Emanuel, 2001: The effect of vertical wind shear on radiative–convective equilibrium states. J. Atmos. Sci., 58 , 14271445.

    • Search Google Scholar
    • Export Citation
  • Roundy, P., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65 , 13421359.

  • Shige, S., and T. Satomura, 2001: Westward generation of eastward-moving tropical convective bands in TOGA COARE. J. Atmos. Sci., 58 , 37243740.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58 , 36503665.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and A. J. Majda, 2006: The structure of precipitation fronts for finite relaxation time. Theor. Comput. Fluid Dyn., 20 , 377404.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and A. J. Majda, 2009: Gravity waves in shear and implications for organized convection. J. Atmos. Sci., 66 , 25792599.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., A. J. Majda, and B. Khouider, 2008: Nonlinear dynamics of hydrostatic internal gravity waves. Theor. Comput. Fluid Dyn., 22 , 407432.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59 , 3053.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., G. N. Kiladis, and P. E. Ciesielski, 2006: The role of equatorial waves in the onset of the South China Sea summer monsoon and the demise of El Niño during 1998. Dyn. Atmos. Oceans, 42 , 216238.

    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., 2009: The moisture mode in the quasi-equilibrium tropical circulation model. Part I: Analysis based on the weak temperature gradient approximation. J. Atmos. Sci., 66 , 15071523.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994a: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72 , 433448.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994b: Large-scale cloud disturbances associated with equatorial waves. Part II: Westward propagating inertio–gravity waves. J. Meteor. Soc. Japan, 72 , 451465.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., S. Shige, W-K. Tao, and N. Hirota, 2010: Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data. J. Climate, 23 , 20302046.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., and B. E. Mapes, 2008: Multiscale convective wave disturbances in the tropics: Insights from a two-dimensional cloud-resolving model. J. Atmos. Sci., 65 , 140155.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and B. Khouider, 2009: Boundary layer dynamics in a simple model for convectively coupled gravity waves. J. Atmos. Sci., 66 , 27802795.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53 , 449467.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1972: Response of the tropical atmosphere to local steady forcing. Mon. Wea. Rev., 100 , 518540.

  • Webster, P. J., and J. R. Holton, 1982: Cross-equatorial response to middle-latitude forcing in a zonally varying basic state. J. Atmos. Sci., 39 , 722733.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and H-R. Chang, 1988: Energy accumulation and emanation region at low latitudes: Impacts of a zonally varying basic state. J. Atmos. Sci., 39 , 803829.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57 , 613640.

    • Search Google Scholar
    • Export Citation
  • Xie, X., and B. Wang, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part II: Unstable waves. J. Atmos. Sci., 53 , 35893605.

    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., B. Hoskins, and J. Slingo, 2003: Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data. J. Atmos. Sci., 60 , 16371654.

    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., B. Hoskins, and J. Slingo, 2007: Convectively coupled equatorial waves. Part III: Synthesis structure and their forcing and evolution. J. Atmos. Sci., 64 , 34383451.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43 , RG2003. doi:10.1029/2004RG000158.

  • Zhang, C., and P. Webster, 1989: Effects of zonal flows on equatorially trapped waves. J. Atmos. Sci., 46 , 36323652.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 584 184 10
PDF Downloads 187 61 0