On Sedimentation and Advection in Multimoment Bulk Microphysics

Edward R. Mansell NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Edward R. Mansell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In two-moment bulk microphysics schemes, the practice of using different weighted fall velocities for the various moments is known to lead to artificial growth in reflectivity values for fast-falling particles, particularly at the downward leading edge of a precipitation column. Two simple correction schemes that prevent these artifacts while still allowing some effects of size sorting are presented. The corrections are obtained by comparing particle number concentrations that result from two or three different sedimentation calculations. The corrections do not conserve particle number concentrations but do prevent spurious reflectivity growth automatically without the need to place ad hoc limits on mean particle size.

Multimoment bulk microphysics schemes often have used inconsistent variables in terms of the appropriate advection equation (e.g., mass mixing ratio and particle number concentration). A brief review of consistent advection and turbulent mixing for such variables is presented to provide clarification.

Corresponding author address: Edward R. Mansell, NSSL/National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. Email: ted.mansell@noaa.gov

Abstract

In two-moment bulk microphysics schemes, the practice of using different weighted fall velocities for the various moments is known to lead to artificial growth in reflectivity values for fast-falling particles, particularly at the downward leading edge of a precipitation column. Two simple correction schemes that prevent these artifacts while still allowing some effects of size sorting are presented. The corrections are obtained by comparing particle number concentrations that result from two or three different sedimentation calculations. The corrections do not conserve particle number concentrations but do prevent spurious reflectivity growth automatically without the need to place ad hoc limits on mean particle size.

Multimoment bulk microphysics schemes often have used inconsistent variables in terms of the appropriate advection equation (e.g., mass mixing ratio and particle number concentration). A brief review of consistent advection and turbulent mixing for such variables is presented to provide clarification.

Corresponding author address: Edward R. Mansell, NSSL/National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. Email: ted.mansell@noaa.gov

Save
  • Berry, E. X., 1967: Cloud droplet growth by collection. J. Atmos. Sci., 24 , 688701.

  • Cohard, J-M., and J-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126 , 18151842.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63 , 12311252.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25 , 16581680.

    • Search Google Scholar
    • Export Citation
  • Farley, R. D., 1987: Numerical modeling of hailstorms and hailstone growth. Part II: The role of low-density riming growth in hail production. J. Climate Appl. Meteor., 26 , 234254.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51 , 249280.

  • Grabowski, W. W., and H. Morrison, 2008: Toward the mitigation of spurious cloud-edge supersaturation in cloud models. Mon. Wea. Rev., 136 , 12241234.

    • Search Google Scholar
    • Export Citation
  • Kato, T., 1995: A box-Lagrangian rain-drop scheme. J. Meteor. Soc. Japan, 73 , 241245.

  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67 , 171194.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45 , 339.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62 , 30513064.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62 , 30653081.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2006a: A multimoment bulk microphysics parameterization. Part III: Control simulation of a hailstorm. J. Atmos. Sci., 63 , 31143136.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2006b: A multimoment bulk microphysics parameterization. Part IV: Sensitivity experiments. J. Atmos. Sci., 63 , 31373159.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud—The 19 July CCOPE cloud. J. Meteor. Soc. Japan, 68 , 107128.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., L. J. Donner, and S. T. Garner, 2007: Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics. J. Atmos. Sci., 64 , 738761.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006a: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92 , 4566. doi:10.1007/s00703-005-0112-4.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006b: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: Maritime vs. continental deep convective storms. Meteor. Atmos. Phys., 92 , 6782. doi:10.1007/s00703-005-0113-3.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1978: Parameterization of raindrop size distributions. J. Atmos. Sci., 35 , 108117.

  • Straka, J. M., and E. R. Mansell, 2005: A bulk microphysics parameterization with multiple ice precipitation categories. J. Appl. Meteor., 44 , 445466.

    • Search Google Scholar
    • Export Citation
  • Sun, A., H-Y. Chun, J-J. Baik, and M. Yan, 2002: Influence of electrification on microphysical and dynamical processes in a numerically simulated thunderstorm. J. Appl. Meteor., 41 , 11121127.

    • Search Google Scholar
    • Export Citation
  • Wacker, U., and A. Seifert, 2001: Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description. Atmos. Res., 58 , 1939.

    • Search Google Scholar
    • Export Citation
  • Wacker, U., and C. Lüpkes, 2009: On the selection of prognostic moments in parametrization schemes for drop sedimentation. Tellus, 61A , 498511. doi:10.1111/j.1600-0870.2009.00405.x.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110 , 504520.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52 , 26752703.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and S-J. Lin, 2001: Numerical equivalence of advection in flux and advective forms and quadratically conservative high-order advection schemes. Mon. Wea. Rev., 129 , 561565.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42 , 14871509.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 513 222 8
PDF Downloads 413 137 1