Simulations of Subtropical Cyclones in a Baroclinic Channel Model

Christopher A. Davis National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Christopher A. Davis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study considers a variety of cyclone developments that occur in an idealized, baroclinic channel model featuring full condensation heating effects over an ocean with prescribed sea surface temperature variation. The geostrophic basic-state jet is specified by the tropopause shape, and horizontal shear is included by specifying the meridional variation of zonal wind on the lower boundary. The horizontal shear induces anticyclonic wave breaking of baroclinic waves. Normal mode perturbations are computed using a “fake-dry” version of the model but integrated forward using full physics.

Low-latitude moist convection is particularly strong in simulations with strong surface easterlies that destabilize the troposphere through water vapor fluxes from the ocean surface. Deep convection produces a locally elevated dynamic tropopause and an associated anticyclone. This modified zonal flow supports moist baroclinic instability. The resulting cyclones, identified as subtropical cyclones, occur in deep westerly vertical wind shear but are nearly devoid of lower-tropospheric baroclinicity initially. These systems are distinguished from baroclinically dominated secondary cyclones that also form at relatively low latitudes in the simulations.

For weak jets and strong subtropical surface easterlies, subtropical cyclone development dominates formation on the midlatitude jet. For strong westerly jets or weak horizontal shear, the situation is reversed and the midlatitude baroclinic wave can help or hinder the ultimate intensification of the subtropical cyclone. The similarity of this cross-latitude influence to the extratropical transition of tropical cyclones is noted.

Corresponding author address: Christopher A. Davis, P.O. Box 3000, Boulder, CO 80307. Email: cdavis@ucar.edu

Abstract

The present study considers a variety of cyclone developments that occur in an idealized, baroclinic channel model featuring full condensation heating effects over an ocean with prescribed sea surface temperature variation. The geostrophic basic-state jet is specified by the tropopause shape, and horizontal shear is included by specifying the meridional variation of zonal wind on the lower boundary. The horizontal shear induces anticyclonic wave breaking of baroclinic waves. Normal mode perturbations are computed using a “fake-dry” version of the model but integrated forward using full physics.

Low-latitude moist convection is particularly strong in simulations with strong surface easterlies that destabilize the troposphere through water vapor fluxes from the ocean surface. Deep convection produces a locally elevated dynamic tropopause and an associated anticyclone. This modified zonal flow supports moist baroclinic instability. The resulting cyclones, identified as subtropical cyclones, occur in deep westerly vertical wind shear but are nearly devoid of lower-tropospheric baroclinicity initially. These systems are distinguished from baroclinically dominated secondary cyclones that also form at relatively low latitudes in the simulations.

For weak jets and strong subtropical surface easterlies, subtropical cyclone development dominates formation on the midlatitude jet. For strong westerly jets or weak horizontal shear, the situation is reversed and the midlatitude baroclinic wave can help or hinder the ultimate intensification of the subtropical cyclone. The similarity of this cross-latitude influence to the extratropical transition of tropical cyclones is noted.

Corresponding author address: Christopher A. Davis, P.O. Box 3000, Boulder, CO 80307. Email: cdavis@ucar.edu

Save
  • Bluestein, H. B., 1992: Synoptic–Dynamic Meteorology in Midlatitudes. Vol. I, Principles of Kinematics and Dynamics, Oxford University Press, 431 pp.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: Baroclinic instability and the short wavelength cut-off in terms of potential vorticity. Quart. J. Roy. Meteor. Soc., 92 , 335345.

    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., R. W. Moore, M. T. Montgomery, and C. A. Davis, 2007: Mesoscale convective vortex formation in a weakly sheared moist neutral environment. J. Atmos. Sci., 64 , 14431466.

    • Search Google Scholar
    • Export Citation
  • Daingerfield, L. H., 1921: Kona storms. Mon. Wea. Rev., 49 , 327329.

  • Davies, H. C., Ch Schär, and H. Wernli, 1991: The palette of fronts and cyclones within a baroclinic wave development. J. Atmos. Sci., 48 , 16661689.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131 , 27302747.

  • Davis, C. A., and L. F. Bosart, 2004: The TT problem: Forecasting the tropical transition of cyclones. Bull. Amer. Meteor. Soc., 85 , 16571662.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., C. Snyder, and A. Didlake, 2008: A vortex-based perspective of eastern Pacific tropical cyclone formation. Mon. Wea. Rev., 136 , 24612477.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16 , 219233.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. A., and M. E. McIntyre, 2008: Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65 , 855874.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44 , 15591573.

    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and M. P. Guishard, 2009: Atlantic subtropical storms. Part I: Diagnostic criteria and composite analysis. Mon. Wea. Rev., 137 , 20652080.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29 , 1693. doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Guishard, M. P., J. L. Evans, and R. E. Hart, 2009: Atlantic subtropical storms. Part II: Climatology. J. Climate, 22 , 35743594.

  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131 , 585616.

  • Heckley, W. A., and B. J. Hoskins, 1982: Baroclinic waves and frontogenesis in a non-uniform potential vorticity semi-geostrophic model. J. Atmos. Sci., 39 , 19992016.

    • Search Google Scholar
    • Export Citation
  • Juckes, M., and R. K. Smith, 2000: Convective destabilization by upper-level troughs. Quart. J. Roy. Meteor. Soc., 126 , 111123.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43 , 170181.

  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7 , 157167.

  • Montgomery, M. T., and B. F. Farrell, 1993: Tropical cyclone formation. J. Atmos. Sci., 50 , 285310.

  • Moore, R. W., and M. T. Montgomery, 2005: Analysis of an idealized, three-dimensional diabatic Rossby vortex: A coherent structure of the moist baroclinic atmosphere. J. Atmos. Sci., 62 , 27032725.

    • Search Google Scholar
    • Export Citation
  • Morgan, M. C., and J. W. Nielsen-Gammon, 1998: Using tropopause maps to diagnose midlatitude weather systems. Mon. Wea. Rev., 126 , 25552579.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107 , 421427.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 2003: Bifurcation in eddy lifecycles: Implications for storm track variability. J. Atmos. Sci., 60 , 9931023.

  • Otkin, J. A., and J. E. Martin, 2004: A synoptic climatology of the subtropical kona storm. Mon. Wea. Rev., 132 , 15021517.

  • Parker, D., and A. J. Thorpe, 1995: Conditional convective heating in a baroclinic atmosphere: A model of convective frontogenesis. J. Atmos. Sci., 52 , 16991711.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64 , 25022520.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47 , 30673077.

  • Ritchie, E. A., and R. L. Elsberry, 2007: Simulations of the extratropical transition of tropical cyclones: Phasing between the upper-level trough and tropical cyclones. Mon. Wea. Rev., 135 , 862876.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., W. C. Skamarock, and C. Snyder, 1994: An analysis of frontogenesis in numerical simulations of baroclinic waves. J. Atmos. Sci., 51 , 33733398.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and J. L. Franklin, 1995: Potential vorticity in Hurricane Gloria. Mon. Wea. Rev., 123 , 14651475.

  • Simmons, A. J., and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35 , 414432.

  • Simpson, R. H., 1952: Evolution of the kona storm, a subtropical cyclone. J. Meteor., 9 , 2435.

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124 , 849874.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and B. J. Hoskins, 1990: Frontal cyclogenesis. J. Atmos. Sci., 47 , 23172336.

  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behavior. Quart. J. Roy. Meteor. Soc., 119 , 1755.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., R. Fehlmann, and D. Lüthi, 1998: The effect of barotropic shear on upper-level induced cyclogenesis: Semigeostrophic and primitive equation numerical simulations. J. Atmos. Sci., 55 , 20802094.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., S. Dirren, M. Liniger, and M. Zillig, 2002: Dynamical aspects of the life cycle of the winter storm ‘Lothar’ (24–26 December 1999). Quart. J. Roy. Meteor. Soc., 128 , 405429.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and C. A. Davis, 1994: Cyclogenesis in a saturated environment. J. Atmos. Sci., 51 , 889908.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 245 86 6
PDF Downloads 150 67 2