Particle Growth and Drop Collection Efficiency of Warm Clouds as Inferred from Joint CloudSat and MODIS Observations

Kentaroh Suzuki Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Kentaroh Suzuki in
Current site
Google Scholar
PubMed
Close
,
Takashi Y. Nakajima Research and Information Center, Tokai University, Tokyo, Japan

Search for other papers by Takashi Y. Nakajima in
Current site
Google Scholar
PubMed
Close
, and
Graeme L. Stephens Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Graeme L. Stephens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study describes an approach for combining CloudSat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations to investigate the microphysical processes of warm clouds on the global scale. MODIS column optical thickness is vertically distributed between the cloud top and cloud bottom according to adiabatic and condensational growth assumptions and used as a vertical coordinate system to analyze profiles of CloudSat-observed radar reflectivity. The reflectivity profiles thus rescaled as a function of the in-cloud optical depth clearly depict how the cloud-to-rain particle growth processes take place within the cloud layer and how these processes vary systematically with variations in MODIS-derived effective particle radius. It is also found that the effective radii retrieved using two different wavelengths of MODIS tend to trace the microphysical change of reflectivity profiles in a different way because of the difference in the layer depth that characterizes these two effective radii.

The reflectivity profiles as a function of optical depth are also interpreted in terms of drop collection processes based on the continuous collection model. The slope of the reflectivity change with optical depth provides a gross measure of the collection efficiency factor. The systematic changes of reflectivity profiles with MODIS-derived particle sizes are then interpreted as demonstrating a strong dependency of the collection efficiency on particle size. These results provide a quantitative insight into the drop collection process of warm clouds in the real atmosphere.

Corresponding author address: Kentaroh Suzuki, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523–1371. Email: kenta@atmos.colostate.edu

Abstract

This study describes an approach for combining CloudSat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations to investigate the microphysical processes of warm clouds on the global scale. MODIS column optical thickness is vertically distributed between the cloud top and cloud bottom according to adiabatic and condensational growth assumptions and used as a vertical coordinate system to analyze profiles of CloudSat-observed radar reflectivity. The reflectivity profiles thus rescaled as a function of the in-cloud optical depth clearly depict how the cloud-to-rain particle growth processes take place within the cloud layer and how these processes vary systematically with variations in MODIS-derived effective particle radius. It is also found that the effective radii retrieved using two different wavelengths of MODIS tend to trace the microphysical change of reflectivity profiles in a different way because of the difference in the layer depth that characterizes these two effective radii.

The reflectivity profiles as a function of optical depth are also interpreted in terms of drop collection processes based on the continuous collection model. The slope of the reflectivity change with optical depth provides a gross measure of the collection efficiency factor. The systematic changes of reflectivity profiles with MODIS-derived particle sizes are then interpreted as demonstrating a strong dependency of the collection efficiency on particle size. These results provide a quantitative insight into the drop collection process of warm clouds in the real atmosphere.

Corresponding author address: Kentaroh Suzuki, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523–1371. Email: kenta@atmos.colostate.edu

Save
  • Brenguier, J-L., H. Pawlowska, L. Schüller, R. Preusker, J. Fischer, and Y. Fouquart, 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57 , 803821.

    • Search Google Scholar
    • Export Citation
  • Chang, F-L., and Z. Li, 2002: Estimating the vertical variation of cloud droplet effective radius using multispectral near-infrared satellite measurements. J. Geophys. Res., 107 , 4257. doi:10.1029/2001JD000766.

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7 , 465497.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., and G. L. Stephens, 2007: Tropical oceanic cloudiness and the incidence of precipitation: Early results from CloudSat. Geophys. Res. Lett., 34 , L09811. doi:10.1029/2007GL029335.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, N. B. Wood, and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114 , D00A22. doi:10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Kawamoto, K., T. Nakajima, and T. Y. Nakajima, 2001: A global determination of cloud microphysics with AVHRR remote sensing. J. Climate, 14 , 20542068.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. L. Hartmann, and R. Wood, 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part I: Satellite observations. J. Atmos. Sci., 66 , 29532972.

    • Search Google Scholar
    • Export Citation
  • Long, A. B., 1974: Solutions to the droplet collection equation for polynomial kernels. J. Atmos. Sci., 31 , 10401052.

  • Mace, G. G., R. Marchand, Q. Zhang, and G. Stephens, 2007: Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophys. Res. Lett., 34 , L09808. doi:10.1029/2006GL029017.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., T. Uttal, and D. Z. Hazen, 2004: Evaluation of radar reflectivity–based estimates of water content in stratiform marine clouds. J. Appl. Meteor., 43 , 405419.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., M. D. King, J. D. Spinhirne, and L. F. Radke, 1991: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part II: Marine stratocumulus observations. J. Atmos. Sci., 48 , 728750.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., and T. Nakajima, 1995: Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J. Atmos. Sci., 52 , 40434059.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., K. Suzuki, and G. L. Stephens, 2010a: Droplet growth in warm water clouds observed by the A-Train. Part I: Sensitivity analysis of the MODIS-derived cloud droplet sizes. J. Atmos. Sci., 67 , 18841896.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., K. Suzuki, and G. L. Stephens, 2010b: Droplet growth in warm water clouds observed by the A-Train. Part II: A multi-sensor view. J. Atmos. Sci., 67 , 18971907.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., 2000: Vertical photon transport in cloud remote sensing problems. J. Geophys. Res., 105 , 2291922935.

  • Polonsky, I., 2008: Level 2 cloud optical depth product process description and interface control document. CloudSat Project, CIRA, Colorado State University, Fort Collins, 21 pp. [Available online at http://www.cloudsat.cira.clostate.edu/ICD/2B-TAU/2B-TAU_PDICD_5.0.pdf].

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. Elsevier, 293 pp.

  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287 , 17931796.

  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insight into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79 , 24572476.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and J. M. Haynes, 2007: Near global observations of the warm rain coalescence process. Geophys. Res. Lett., 34 , L20805. doi:10.1029/2007GL030259.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83 , 17711790.

  • Stephens, G. L., and Coauthors, 2008: The CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113 , D00A18. doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., and G. L. Stephens, 2008: Global identification of warm cloud microphysical processes with combined use of A-Train observations. Geophys. Res. Lett., 35 , L08805. doi:10.1029/2008GL033590.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., and G. L. Stephens, 2009: A possible use of multi-sensor satellite observations for inferring the drop collection efficiency of warm clouds. SOLA, 5 , 125128.

    • Search Google Scholar
    • Export Citation
  • Szczodrak, M., P. H. Austin, and P. B. Krummel, 2001: Variability of optical depth and effective radius in marine stratocumulus clouds. J. Atmos. Sci., 58 , 29122926.

    • Search Google Scholar
    • Export Citation
  • Telford, J. W., 1955: A new aspect of coalescence theory. J. Meteor., 12 , 436444.

  • Wood, R., T. Kubar, and D. Hartmann, 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part II: Heuristic models of rain formation. J. Atmos. Sci., 66 , 29732990.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 805 421 19
PDF Downloads 409 160 16