Mechanisms of Along-Valley Winds and Heat Exchange over Mountainous Terrain

Juerg Schmidli Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland, and National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Juerg Schmidli in
Current site
Google Scholar
PubMed
Close
and
Richard Rotunno National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Richard Rotunno in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The physical mechanisms leading to the formation of diurnal along-valley winds are investigated over idealized three-dimensional topography. The topography used in this study consists of a valley with a horizontal floor enclosed by two isolated mountain ridges on a horizontal plain. A diagnostic equation for the along-valley pressure gradient is developed and used in combination with numerical model simulations to clarify the relative role of various forcing mechanisms such as the valley volume effect, subsidence heating, and surface sensible heat flux effects. The full diurnal cycle is simulated using comprehensive model physics including radiation transfer, land surface processes, and dynamic surface–atmosphere interactions. The authors find that the basic assumption of the valley volume argument of no heat exchange with the free atmosphere seldom holds. Typically, advective and turbulent heat transport reduce the heating of the valley during the day and the cooling of the valley during the night. In addition, dynamically induced valley–plain contrasts in the surface sensible heat flux can play an important role. Nevertheless, the present analysis confirms the importance of the valley volume effect for the formation of the diurnal along-valley winds but also clarifies the role of subsidence heating and the limitations of the valley volume effect argument. In summary, the analysis brings together different ideas of the valley wind into a unified picture.

Corresponding author address: Juerg Schmidli, Institute for Atmospheric and Climate Science, Universitaetsstrasse 16, ETH Zurich, CH-8092 Zurich, Switzerland. Email: jschmidli@env.ethz.ch

Abstract

The physical mechanisms leading to the formation of diurnal along-valley winds are investigated over idealized three-dimensional topography. The topography used in this study consists of a valley with a horizontal floor enclosed by two isolated mountain ridges on a horizontal plain. A diagnostic equation for the along-valley pressure gradient is developed and used in combination with numerical model simulations to clarify the relative role of various forcing mechanisms such as the valley volume effect, subsidence heating, and surface sensible heat flux effects. The full diurnal cycle is simulated using comprehensive model physics including radiation transfer, land surface processes, and dynamic surface–atmosphere interactions. The authors find that the basic assumption of the valley volume argument of no heat exchange with the free atmosphere seldom holds. Typically, advective and turbulent heat transport reduce the heating of the valley during the day and the cooling of the valley during the night. In addition, dynamically induced valley–plain contrasts in the surface sensible heat flux can play an important role. Nevertheless, the present analysis confirms the importance of the valley volume effect for the formation of the diurnal along-valley winds but also clarifies the role of subsidence heating and the limitations of the valley volume effect argument. In summary, the analysis brings together different ideas of the valley wind into a unified picture.

Corresponding author address: Juerg Schmidli, Institute for Atmospheric and Climate Science, Universitaetsstrasse 16, ETH Zurich, CH-8092 Zurich, Switzerland. Email: jschmidli@env.ethz.ch

Save
  • Brehm, M., 1986: Experimentelle und numerische Untersuchungen der Hangwindschicht und ihrer Rolle bei der Erwärmung von Tälern. Ph.D. thesis, Meteorologisches Institut, Universität München, 150 pp.

  • Byun, D. W., 1990: On the analytical solutions of flux-profile relationships for the atmospheric surface layer. J. Appl. Meteor., 29 , 652657.

    • Search Google Scholar
    • Export Citation
  • Chou, M-D., 1990: Parameterization for the absorption of solar radiation by O2 and CO2 with application for climate studies. J. Climate, 3 , 209217.

    • Search Google Scholar
    • Export Citation
  • Chou, M-D., 1992: A solar radiation model for use in climate studies. J. Atmos. Sci., 49 , 762772.

  • Chou, M-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 85 pp.

    • Search Google Scholar
    • Export Citation
  • Colette, A., F. K. Chow, and R. L. Steet, 2003: A numerical study of inversion-layer breakup and the effects of topographic shading in idealized valleys. J. Appl. Meteor., 42 , 12551272.

    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F. J., S. Zhong, J. D. Fast, and C. D. Whiteman, 1998: A numerical study of the thermally driven plain-to-basin wind over idealized basin topographies. J. Appl. Meteor., 37 , 606622.

    • Search Google Scholar
    • Export Citation
  • Egger, J., 1990: Thermally forced flows: Theory. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 43–58.

    • Search Google Scholar
    • Export Citation
  • Li, J. G., and B. W. Atkinson, 1999: Transition regimes in valley airflows. Bound.-Layer Meteor., 91 , 385411.

  • Mahrt, L., 1982: Momentum balance of gravity flows. J. Atmos. Sci., 39 , 27012711.

  • McKee, T. B., and R. D. O’Neal, 1989: The role of valley geometry and energy budget in the formation of nocturnal valley winds. J. Appl. Meteor., 28 , 445456.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the ground layer of the atmosphere. Akad. Nauk SSSR Geofiz. Inst. Tr., 151 , 163187.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Search Google Scholar
    • Export Citation
  • Noppel, H., and F. Fiedler, 2002: Mesoscale heat transport over complex terrain by slope winds—A conceptual model and numerical simulations. Bound.-Layer Meteor., 104 , 7397.

    • Search Google Scholar
    • Export Citation
  • Rampanelli, G., D. Zardi, and R. Rotunno, 2004: Mechanisms of up-valley winds. J. Atmos. Sci., 61 , 30973111.

  • Ren, D., and M. Xue, 2004: A revised force–restore model for land surface modeling. J. Appl. Meteor., 43 , 17681782.

  • Rotach, M. W., M. Andretta, P. Calanca, A. P. Weigel, and A. Weiss, 2008: Boundary layer characteristics and turbulent exchange mechanisms in highly complex terrain. Acta Geophys., 56 , 194219.

    • Search Google Scholar
    • Export Citation
  • Schmidli, J., G. S. Poulos, M. H. Daniels, and F. K. Chow, 2009: External influences on nocturnal thermally driven flows in a deep valley. J. Appl. Meteor. Climatol., 48 , 323.

    • Search Google Scholar
    • Export Citation
  • Steinacker, R., 1984: Area–height distribution of a valley and its relation to the valley wind. Contrib. Atmos. Phys., 57 , 6471.

  • Sun, W-Y., and C-Z. Chang, 1986: Diffusion model for a convective layer. Part I: Numerical simulation of convective boundary layer. J. Climate Appl. Meteor., 25 , 14451453.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, C-H. Sui, B. Ferrier, and M-D. Chou, 1996: Mechanisms of cloud–radiation interaction in the tropics and midlatitudes. J. Atmos. Sci., 53 , 26242651.

    • Search Google Scholar
    • Export Citation
  • Thunis, P., and R. Bornstein, 1996: Hierarchy of mesoscale flow assumptions and equations. J. Atmos. Sci., 53 , 380397.

  • Vergeiner, I., 1982: Eine energetische Theorie der Hangwinde (An energetic theory of slope winds). Proc. ITAM 82, Berchtesgaden, Germany, Deutscher Wetterdienst, 181–191.

    • Search Google Scholar
    • Export Citation
  • Vergeiner, I., and E. Dreiseitl, 1987: Valley winds and slope winds—Observations and elementary thoughts. Meteor. Atmos. Phys., 36 , 264286.

    • Search Google Scholar
    • Export Citation
  • Vergeiner, I., E. Dreiseitl, and C. D. Whiteman, 1987: Dynamics of katabatic winds in Colorado’s Brush Creek Valley. J. Atmos. Sci., 44 , 148157.

    • Search Google Scholar
    • Export Citation
  • Wagner, A., 1938: Theorie und Beobachtung der periodischen Gebirgswinde. Gerlands Beitr. Geophys., 52 , 408449.

  • Weigel, A. P., F. K. Chow, M. W. Rotach, R. L. Street, and M. Xue, 2006: High-resolution large-eddy simulations of flow in a steep Alpine valley. Part II: Flow structure and heat budgets. J. Appl. Meteor. Climatol., 45 , 87107.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., F. K. Chow, and M. W. Rotach, 2007: The effect of mountainous topography on moisture exchange between the “surface” and the free atmosphere. Bound.-Layer Meteor., 125 , 227244.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 1986: Temperature inversion buildup in Colorado’s Eagle Valley. Meteor. Atmos. Phys., 35 , 220226.

  • Whiteman, C. D., 1990: Observations of thermally developed wind systems in mountainous terrain. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 5–42.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Whiteman, C. D., and T. B. McKee, 1982: Breakup of temperature inversions in deep mountain valleys. Part II. Thermodynamic model. J. Appl. Meteor., 21 , 290302.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and J. C. Doran, 1993: The relationship between overlying synoptic-scale flows and winds within a valley. J. Appl. Meteor., 32 , 16691682.

    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75 , 161193.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part II: Model physics and applications. Meteor. Atmos. Phys., 76 , 143165.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 505 179 17
PDF Downloads 309 106 9