Evolution of Multiscale Vortices in the Development of Hurricane Dolly (2008)

Juan Fang Key Laboratory of Mesoscale Severe Weather (MOE), Department of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Juan Fang in
Current site
Google Scholar
PubMed
Close
and
Fuqing Zhang Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Fuqing Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As a follow-up to a previously published article on the initial development and genesis of Hurricane Dolly (2008), this study further examines the evolution of, and interactions among, multiscale vortices ranging from the system-scale main vortex (L > 150 km) to the intermediate-scale cloud clusters (50 km < L < 150 km) and individual vorticity-rich convective cells (L < 50 km). It is found that there are apparent self-similarities among these vortices at different scales, each of which may undergo several cycles of alternating accumulation and release of convective available potential energy. Enhanced surface fluxes below individual cyclonic vortices at each scale contribute to the sustainment and reinvigoration of moist convection that in turn contributes to the maintenance and upscale growth of these vortices.

Spectral analysis of horizontal divergence and relative vorticity further suggests that the cloud-cluster-scale and system-scale vortices are predominantly balanced while the individual convective vortices are largely unbalanced. The vorticity and energy produced by these individual vorticity-rich convective cells first saturate at convective scales that are subsequently transferred to larger scales. The sum of the diabatic heating released from these convective cells may be regarded as a persistent forcing on the quasi-balanced system-scale vortex. The secondary circulation induced by such forcing converges the cluster- and convective-scale vorticity anomalies into the storm center region. Convergence and projections of the smaller-scale vorticity to the larger scales eventually produce the spinup of the system-scale vortex. Meanwhile, convectively induced negative vorticity anomalies also converge toward the storm center, which are weaker and shorter lived, and thus are absorbed rather than expelled.

Corresponding author address: Dr. Juan Fang, Key Laboratory of Mesoscale Severe Weather (MOE), Dept. of Atmospheric Sciences, Nanjing University, Nanjing 210093, China. Email: fangjuan@nju.edu.cn

Abstract

As a follow-up to a previously published article on the initial development and genesis of Hurricane Dolly (2008), this study further examines the evolution of, and interactions among, multiscale vortices ranging from the system-scale main vortex (L > 150 km) to the intermediate-scale cloud clusters (50 km < L < 150 km) and individual vorticity-rich convective cells (L < 50 km). It is found that there are apparent self-similarities among these vortices at different scales, each of which may undergo several cycles of alternating accumulation and release of convective available potential energy. Enhanced surface fluxes below individual cyclonic vortices at each scale contribute to the sustainment and reinvigoration of moist convection that in turn contributes to the maintenance and upscale growth of these vortices.

Spectral analysis of horizontal divergence and relative vorticity further suggests that the cloud-cluster-scale and system-scale vortices are predominantly balanced while the individual convective vortices are largely unbalanced. The vorticity and energy produced by these individual vorticity-rich convective cells first saturate at convective scales that are subsequently transferred to larger scales. The sum of the diabatic heating released from these convective cells may be regarded as a persistent forcing on the quasi-balanced system-scale vortex. The secondary circulation induced by such forcing converges the cluster- and convective-scale vorticity anomalies into the storm center region. Convergence and projections of the smaller-scale vorticity to the larger scales eventually produce the spinup of the system-scale vortex. Meanwhile, convectively induced negative vorticity anomalies also converge toward the storm center, which are weaker and shorter lived, and thus are absorbed rather than expelled.

Corresponding author address: Dr. Juan Fang, Key Laboratory of Mesoscale Severe Weather (MOE), Dept. of Atmospheric Sciences, Nanjing University, Nanjing 210093, China. Email: fangjuan@nju.edu.cn

Save
  • Black, M. L., R. W. Burpee, and F. D. Marks Jr., 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53 , 18871909.

    • Search Google Scholar
    • Export Citation
  • Bui, H., K. Smith, M. T. Montgomery, and J. Peng, 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135 , 17151731.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21 , 6875.

  • Chen, S. S., and W. M. Frank, 1993: A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics. J. Atmos. Sci., 50 , 24012426.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119 , 19291953.

  • Davis, C. A., and L. F. Bosart, 2006: The formation of Hurricane Humberto (2001): The importance of extra-tropical precursors. Quart. J. Roy. Meteor. Soc., 132 , 20552085.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2008: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys. Discuss., 8 , 1114911292.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci., 43 , 585604.

    • Search Google Scholar
    • Export Citation
  • Fang, J., and F. Zhang, 2010: Initial development and genesis of Hurricane Dolly (2008). J. Atmos. Sci., 67 , 655672.

  • Frank, W. M., 1983: The cumulus parameterization problems. Mon. Wea. Rev., 111 , 18591871.

  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43 , 15591573.

    • Search Google Scholar
    • Export Citation
  • Hawblitzel, D. P., F. Zhang, Z. Meng, and C. A. Davis, 2007: Probabilistic evaluation of the dynamics and predictability of the mesoscale convective vortex of 10–13 June 2003. Mon. Wea. Rev., 135 , 15441563.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44 , 828841.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61 , 12091232.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., W. C. Lee, and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137 , 27782800.

    • Search Google Scholar
    • Export Citation
  • Laing, A., and J-L. Evans, cited. 2010: Introduction to Tropical Meteorology. COMET. [Available online at http://www.meted.ucar.edu/tropical/textbook].

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and F. Zhang, 2008: Tracing mesoscale gravity waves in baroclinic jet-front systems. J. Atmos. Sci., 65 , 24022415.

  • Marks, F. D., and R. A. Houze Jr., 1984: Airborne Doppler radar observations in Hurricane Debby. Bull. Amer. Meteor. Soc., 65 , 569582.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., P. G. Black, M. T. Montgomery, and R. W. Burpee, 2008: Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136 , 12371259.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1985: A uniformly valid model spanning the regimes of geostrophic and isotropic, stratified turbulence: Balanced turbulence. J. Atmos. Sci., 42 , 17731774.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55 , 31763207.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63 , 355386.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., S. V. Nguyen, R. K. Smith, and J. Persing, 2009: Do tropical cyclones intensify by WISHE? Quart. J. Roy. Meteor. Soc., 135 , 16971714.

    • Search Google Scholar
    • Export Citation
  • Nguyen, S. V., R. K. Smith, and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134 , 563582.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56 , 241266.

  • Nolan, D. S., and L. D. Grasso, 2003: Three-dimensional, nonhydrostatic perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60 , 27172745.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., M. T. Montgomery, and L. D. Grasso, 2001: The wavenumber one instability and trochoidal motion of hurricane-like vortices. J. Atmos. Sci., 58 , 32433270.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64 , 33773405.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1964: A dynamical model for the study of tropical cyclone development. Geofis. Int., 4 , 187198.

  • Ooyama, K., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60 , 369370.

  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137 , 805821.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in FORTRAN 77: The Art of Scientific Computing. Vol. 1. 2nd ed. Cambridge University Press, 933 pp.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47 , 30673077.

  • Reasor, P. D., M. T. Montgomery, and L. F. Bosart, 2005: Mesoscale observations in the genesis of Hurricane Dolly (1996). J. Atmos. Sci., 62 , 31513171.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., M. L. Black, S. S. Chen, and R. A. Black, 2007: An evaluation of microphysics fields from mesoscale model simulation of tropical cyclones. Part I: Comparisons with observations. J. Atmos. Sci., 64 , 18111834.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39 , 16871697.

  • Schubert, W. H., J. J. Hack, P. L. Silva Dias, and S. R. Fulton, 1980: Geostrophic adjustment in an axisymmetric vortex. J. Atmos. Sci., 37 , 14641484.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39 , 378394.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., J. W. Nielsen-Gammon, and S. E. Allen, 2006: The multiple-vortex nature of tropical cyclogenesis. Mon. Wea. Rev., 134 , 17961814.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., and M. T. Montgomery, 2008: Tropical cyclone formation: A synopsis of the internal dynamics. Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando FL, Amer. Meteor. Soc., 10A.1. [Available online at http://ams.confex.com/ams/pdfpapers/138062.pdf].

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., M. T. Montgomery, and N. E. Davidson, 2006a: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part I: The critical role of vortex enhancement in deep convection. J. Atmos. Sci., 63 , 30773089.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., M. T. Montgomery, N. E. Davidson, and J. D. Kepert, 2006b: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part II: A diagnosis of Tropical Cyclone Chris formation. J. Atmos. Sci., 63 , 30913113.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H., 1990: Gradient balance in tropical cyclones. J. Atmos. Sci., 47 , 265274.

  • Willoughby, H., 2009: Diabatically induced secondary flows in tropical cyclones. Part II: Periodic forcing. Mon. Wea. Rev., 137 , 822835.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and S. A. Braun, 2004: Effects of environmentally induced asymmetries on hurricane intensity: A numerical study. J. Atmos. Sci., 61 , 30653081.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part III: Vertical mass transport, mass divergence, and synthesis. Mon. Wea. Rev., 123 , 19641983.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and C. Q. Kieu, 2005: Shear-forced vertical circulations in tropical cyclones. Geophys. Res. Lett., 32 , L13822. doi:10.1029/2005GL023146.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66 , 19441961.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 614 307 35
PDF Downloads 246 78 7