Response of Tropical Precipitation to Global Warming

David M. Romps Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by David M. Romps in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using high-resolution cloud-resolving simulations with different CO2 concentrations, local precipitation fluxes are found to obey Clausius–Clapeyron (CC) scaling. Previous studies of the effect of CO2 concentration on precipitation extremes have used general circulation models, which are poor platforms for studying tropical convection because convection is parameterized. In idealized cloud-resolving simulations, it is possible to identify not only the changes in local precipitation fluxes, but also the factors responsible for those changes.

There are many properties of convection that can change as the atmosphere warms, each of which could produce deviations from CC scaling. These properties include the effective water-vapor gradient, cloud pressure depth, and cloud velocity. A simple theory is developed that predicts the changes in these properties consistent with CC scaling. Convection in the cloud-resolving simulations is found to change as predicted by this theory, leading to an ∼20% increase in local precipitation fluxes when the CO2 concentration is doubled. Overall, an increase in CO2 leads to more vigorous convection, composed of clouds that are wider, taller, and faster.

Corresponding author address: David M. Romps, Department of Earth and Planetary Sciences, Harvard University, 416 Geological Museum, 24 Oxford St., Cambridge, MA 02138. Email: davidromps@gmail.com

Abstract

Using high-resolution cloud-resolving simulations with different CO2 concentrations, local precipitation fluxes are found to obey Clausius–Clapeyron (CC) scaling. Previous studies of the effect of CO2 concentration on precipitation extremes have used general circulation models, which are poor platforms for studying tropical convection because convection is parameterized. In idealized cloud-resolving simulations, it is possible to identify not only the changes in local precipitation fluxes, but also the factors responsible for those changes.

There are many properties of convection that can change as the atmosphere warms, each of which could produce deviations from CC scaling. These properties include the effective water-vapor gradient, cloud pressure depth, and cloud velocity. A simple theory is developed that predicts the changes in these properties consistent with CC scaling. Convection in the cloud-resolving simulations is found to change as predicted by this theory, leading to an ∼20% increase in local precipitation fluxes when the CO2 concentration is doubled. Overall, an increase in CO2 leads to more vigorous convection, composed of clouds that are wider, taller, and faster.

Corresponding author address: David M. Romps, Department of Earth and Planetary Sciences, Harvard University, 416 Geological Museum, 24 Oxford St., Cambridge, MA 02138. Email: davidromps@gmail.com

Save
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419 , 224232.

  • Boer, G., 1993: Climate change and the regulation of the surface moisture and energy budgets. Climate Dyn., 8 , 225239.

  • Bretherton, C., 2007: Challenges in numerical modeling of tropical circulations. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 302–330.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, P. T. Haertel, and J. Wang, 2003: Corrected TOGA COARE sounding humidity data: Impact on diagnosed properties of convection and climate over the warm pool. J. Climate, 16 , 23702384.

    • Search Google Scholar
    • Export Citation
  • Clough, S., M. Shephard, E. Mlawer, J. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91 , 233244.

    • Search Google Scholar
    • Export Citation
  • Commoner, B., 1971: The Closing Circle: Nature, Man, and Technology. Knopf, 326 pp.

  • Del Genio, A. D., M-S. Yao, and J. Jonas, 2007: Will moist convection be stronger in a warmer climate? Geophys. Res. Lett., 34 , L16703. doi:10.1029/2007GL030525.

    • Search Google Scholar
    • Export Citation
  • Ehrlich, P. R., and J. P. Holdren, 1972: A bulletin dialogue on “The Closing Circle”: Critique. Bull. At. Sci., 28 , 1627.

  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32 , L17706. doi:10.1029/2005GL023272.

    • Search Google Scholar
    • Export Citation
  • Gordon, H., P. Whetton, A. Pittock, A. Fowler, and M. Haylock, 1992: Simulated changes in daily rainfall intensity due to the enhanced greenhouse effect: Implications for extreme rainfall events. Climate Dyn., 8 , 83102.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud–climate feedback. Geophys. Res. Lett., 29 , 1951. doi:10.1029/2002GL015835.

    • Search Google Scholar
    • Export Citation
  • Held, I., and B. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19 , 56865699.

  • Hennessy, K., J. Gregory, and J. Mitchell, 1997: Changes in daily precipitation under enhanced greenhouse conditions. Climate Dyn., 13 , 667680.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113 , D13103. doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Iwashima, T., and R. Yamamoto, 1993: A statistical analysis of the extreme events: Long-term trend of heavy daily precipitation. J. Meteor. Soc. Japan, 71 , 637640.

    • Search Google Scholar
    • Export Citation
  • Karl, T., R. Knight, and N. Plummer, 1995: Trends in high-frequency climate variability in the twentieth century. Nature, 377 , 217220.

    • Search Google Scholar
    • Export Citation
  • Kharin, V., F. Zwiers, X. Zhang, and G. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20 , 14191444.

    • Search Google Scholar
    • Export Citation
  • Krueger, S., Q. Fu, K. Liou, and H. Chin, 1995: Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34 , 281287.

    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., M. K. MacVean, and A. P. Lock, 1993: Positivity-preserving numerical schemes for multidimensional advection. NASA Tech. Rep. 106055, 62 pp.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., R. Farley, and H. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R., M. Chou, and A. Hou, 2001: Does the Earth have an adaptive infrared iris? Bull. Amer. Meteor. Soc., 82 , 417432.

  • Lord, S., H. Willoughby, and J. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41 , 28362848.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88 , 13831394.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., P. A. O’Gorman, and L. E. Back, 2011: Intensification of precipitation extremes with warming in a cloud-resolving model. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J. Climate, 22 , 56765685.

    • Search Google Scholar
    • Export Citation
  • Pall, P., M. Allen, and D. Stone, 2007: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28 , 351363.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., 1981: The role of ocean–atmosphere interactions in the CO2 climate problem. J. Atmos. Sci., 38 , 918930.

  • Romps, D. M., 2008: The dry-entropy budget of a moist atmosphere. J. Atmos. Sci., 65 , 37793799.

  • Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67 , 468484.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. Portmann, 2007: How often will it rain? J. Climate, 20 , 48014818.

  • Suppiah, R., 1994: Synoptic aspects of wet and dry conditions in central Australia: Observations and GCM simulations for 1 × CO2 and 2 × CO2 conditions. Climate Dyn., 10 , 395405.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., 1996: Multidimensional flux-limited advection schemes. J. Comput. Phys., 123 , 7483.

  • Tian, B., G. Zhang, and V. Ramanathan, 2001: Heat balance in the Pacific warm pool atmosphere during TOGA COARE and CEPEX. J. Climate, 14 , 18811893.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A., and G. Craig, 1999: Sensitivity of tropical convection to sea surface temperature in the absence of large-scale flow. J. Climate, 12 , 462476.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., A. Dai, R. Rasmussen, and D. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84 , 12051217.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1160 489 12
PDF Downloads 646 183 14