The Vertical Distribution of Radon in Clear and Cloudy Daytime Terrestrial Boundary Layers

Alastair G. Williams Australian Nuclear Science and Technology Organisation, Sydney, New South Wales, Australia

Search for other papers by Alastair G. Williams in
Current site
Google Scholar
PubMed
Close
,
Wlodek Zahorowski Australian Nuclear Science and Technology Organisation, Sydney, New South Wales, Australia

Search for other papers by Wlodek Zahorowski in
Current site
Google Scholar
PubMed
Close
,
Scott Chambers Australian Nuclear Science and Technology Organisation, Sydney, New South Wales, Australia

Search for other papers by Scott Chambers in
Current site
Google Scholar
PubMed
Close
,
Alan Griffiths Australian Nuclear Science and Technology Organisation, Sydney, New South Wales, Australia

Search for other papers by Alan Griffiths in
Current site
Google Scholar
PubMed
Close
,
Jörg M. Hacker Airborne Research Australia, Flinders University of South Australia, Adelaide, South Australia, Australia

Search for other papers by Jörg M. Hacker in
Current site
Google Scholar
PubMed
Close
,
Adrian Element Australian Nuclear Science and Technology Organisation, Sydney, New South Wales, Australia

Search for other papers by Adrian Element in
Current site
Google Scholar
PubMed
Close
, and
Sylvester Werczynski Australian Nuclear Science and Technology Organisation, Sydney, New South Wales, Australia

Search for other papers by Sylvester Werczynski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Radon (222Rn) is a powerful natural tracer of mixing and exchange processes in the atmospheric boundary layer. The authors present and discuss the main features of a unique dataset of 50 high-resolution vertical radon profiles up to 3500 m above ground level, obtained in clear and cloudy daytime terrestrial boundary layers over an inland rural site in Australia using an instrumented motorized research glider. It is demonstrated that boundary layer radon profiles frequently exhibit a complex layered structure as a result of mixing and exchange processes of varying strengths and extents working in clear and cloudy conditions within the context of the diurnal cycle and the synoptic meteorology. Normalized aircraft radon measurements are presented, revealing the characteristic structure and variability of three major classes of daytime boundary layer: 1) dry convective boundary layers, 2) mixed layers topped with residual layers, and 3) convective boundary layers topped with coupled nonprecipitating clouds. Robust and unambiguous signatures of important atmospheric processes in the boundary layer are identifiable in the radon profiles, including “top-down” mixing associated with entrainment in clear-sky cases and strongly enhanced venting and subcloud-layer mixing when substantial active cumulus are present. In poorly mixed conditions, radon gradients in the daytime atmospheric surface layer significantly exceed those predicted by Monin–Obukhov similarity theory. In two case studies, it is demonstrated for the first time that a sequence of vertical radon profiles measured over the course of a single day can consistently reproduce major structural features of the evolving boundary layer.

Corresponding author address: Alastair Williams, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia. Email: alastair.williams@ansto.gov.au

Abstract

Radon (222Rn) is a powerful natural tracer of mixing and exchange processes in the atmospheric boundary layer. The authors present and discuss the main features of a unique dataset of 50 high-resolution vertical radon profiles up to 3500 m above ground level, obtained in clear and cloudy daytime terrestrial boundary layers over an inland rural site in Australia using an instrumented motorized research glider. It is demonstrated that boundary layer radon profiles frequently exhibit a complex layered structure as a result of mixing and exchange processes of varying strengths and extents working in clear and cloudy conditions within the context of the diurnal cycle and the synoptic meteorology. Normalized aircraft radon measurements are presented, revealing the characteristic structure and variability of three major classes of daytime boundary layer: 1) dry convective boundary layers, 2) mixed layers topped with residual layers, and 3) convective boundary layers topped with coupled nonprecipitating clouds. Robust and unambiguous signatures of important atmospheric processes in the boundary layer are identifiable in the radon profiles, including “top-down” mixing associated with entrainment in clear-sky cases and strongly enhanced venting and subcloud-layer mixing when substantial active cumulus are present. In poorly mixed conditions, radon gradients in the daytime atmospheric surface layer significantly exceed those predicted by Monin–Obukhov similarity theory. In two case studies, it is demonstrated for the first time that a sequence of vertical radon profiles measured over the course of a single day can consistently reproduce major structural features of the evolving boundary layer.

Corresponding author address: Alastair Williams, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia. Email: alastair.williams@ansto.gov.au

Save
  • Anderson, R. V., and R. E. Larson, 1974: Atmospheric electric and radon profiles over a closed basin and the open ocean. J. Geophys. Res., 79 , 34323435.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., H. Berresheim, T. W. Andreae, M. A. Kritz, T. S. Bates, and J. T. Merrill, 1988: Vertical distribution of dimethylsulphide, sulfur dioxide, aerosol ions, and radon over the northwest Pacific Ocean. J. Atmos. Chem., 6 , 149173.

    • Search Google Scholar
    • Export Citation
  • Balkanski, Y. J., D. J. Jacob, R. Arimoto, and M. A. Kritz, 1992: Distribution of 222Rn over the North Pacific: Implications for continental influences. J. Atmos. Chem., 14 , 353374.

    • Search Google Scholar
    • Export Citation
  • Biraud, S., and Coauthors, 2000: European greenhouse gas emissions from continuous atmospheric measurements and radon 222 at Mace Head, Ireland. J. Geophys. Res., 105 , 13511366.

    • Search Google Scholar
    • Export Citation
  • Birot, A., J. Fontan, B. Adroguer, D. Blanc, and A. Bouville, 1968: Measurement of radon concentration in the troposphere up to 5000 meters. Extended Abstracts, Journées d’Electronique de Toulouse, Toulouse, France, 1–7.

    • Search Google Scholar
    • Export Citation
  • Blanchard, R. L., 1964: An emanation system for determining small quantities of radium-226. U.S. Dept. of Health, Education, and Welfare, Public Health Service Publ. 999-RH-9, 19 pp.

    • Search Google Scholar
    • Export Citation
  • Bradley, W., and J. E. Pearson, 1970: Aircraft measurements of the vertical distribution of radon in the lower atmosphere. J. Geophys. Res., 75 , 58905894.

    • Search Google Scholar
    • Export Citation
  • Butterweck, G., A. Reineking, J. Kesten, and J. Porstendörfer, 1994: The use of the natural radioactive noble gases radon and thoron as tracers for the study of turbulent exchange in the atmospheric boundary layer—Case study in and above a wheat field. Atmos. Environ., 28 , 19631969.

    • Search Google Scholar
    • Export Citation
  • Chevillard, A., and Coauthors, 2002: Transport of 222Rn using the regional model REMO: A detailed comparison with measurements over Europe. Tellus, 54B , 850871.

    • Search Google Scholar
    • Export Citation
  • Cohen, L. D., S. Barr, R. Krablin, and H. Newstein, 1972: Steady-state vertical turbulent diffusion of radon. J. Geophys. Res., 77 , 26542668.

    • Search Google Scholar
    • Export Citation
  • Considine, D. B., D. J. Bergmann, and H. Liu, 2005: Sensitivity of Global Modeling Initiative chemistry and transport model simulations of radon-222 and lead-210 to input meteorological data. Atmos. Chem. Phys., 5 , 33893406.

    • Search Google Scholar
    • Export Citation
  • Crawford, J., W. Zahorowski, and D. D. Cohen, 2008: A new metric space incorporating radon-222 for generation of back trajectory clusters in atmospheric pollution studies. Atmos. Environ., 43 , 371381.

    • Search Google Scholar
    • Export Citation
  • Dentener, F., J. Feichter, and A. Jeuken, 1999: Simulation of the transport of Rn-222 using on-line and off-line global models at different horizontal resolutions: A detailed comparison with measurements. Tellus, 51B , 573602.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. D. Hess, 1998: An overview of the HYSPLIT-4 modelling system for trajectories, dispersion and deposition. Aust. Meteor. Mag., 47 , 295308.

    • Search Google Scholar
    • Export Citation
  • Filippi, D., 2000: Etude et développement d’un instrument aéroporté destiné à la collecte des aérosols et à la mesure du 222Rn par son dépôt actif. Ph.D. dissertation, Université Paris 6 Pierre et Marie Curie, 267 pp.

  • Forster, C., A. Stohl, and P. Seibert, 2007: Parameterization of convective transport in a Lagrangian particle dispersion model and its evaluation. J. Appl. Meteor. Climatol., 46 , 403422.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Gaudry, A., G. Polian, B. Ardouin, and G. Lambert, 1990: Radon-calibrated emissions of CO2 from South Africa. Tellus, 42 , 919.

  • Gogolak, C. V., and H. L. Beck, 1980: Diurnal variations of radon daughter concentrations in the lower atmosphere. Natural radiation environment III, U.S. Department of Energy Rep. CONF-780422, 259–280.

    • Search Google Scholar
    • Export Citation
  • Griffiths, A. D., W. Zahorowski, A. Element, and S. Werczynski, 2010: A map of radon flux at the Australian land surface. Atmos. Chem. Phys., 10 , 89698982.

    • Search Google Scholar
    • Export Citation
  • Guedalia, D., C. Allet, and J. Fontan, 1974: Vertical exchange measurements in the lower troposphere using ThB (Pb-212) and radon (Rn-222). J. Appl. Meteor., 13 , 2739.

    • Search Google Scholar
    • Export Citation
  • Gupta, M. L., A. R. Douglass, S. Randolph Kawa, and S. Pawson, 2004: Use of radon for evaluation of atmospheric transport models: Sensitivity to emissions. Tellus, 56B , 404412.

    • Search Google Scholar
    • Export Citation
  • Hosler, C. R., 1968: Urban–rural climatology of atmospheric radon concentrations. J. Geophys. Res., 73 , 11551166.

  • Israël, H., 1951: Radioactivity of the atmosphere. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 155–161.

  • Jacob, D. J., and M. J. Prather, 1990: Radon-222 as a test of convective transport in a general circulation model. Tellus, 42B , 118134.

    • Search Google Scholar
    • Export Citation
  • Jacob, D. J., and Coauthors, 1997: Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers. J. Geophys. Res., 102 , 59535970.

    • Search Google Scholar
    • Export Citation
  • Jacobi, W., and K. André, 1963: The vertical distribution of radon-222, radon-220, and their decay products in the atmosphere. J. Geophys. Res., 68 , 37993814.

    • Search Google Scholar
    • Export Citation
  • Jonassen, N., and M. H. Wilkening, 1970: Airborne measurements of radon 222 daughter ions in the atmosphere. J. Geophys. Res., 75 , 17451752.

    • Search Google Scholar
    • Export Citation
  • Kirichenko, L. V., 1962: The vertical distribution of the products of decay of radon in the free atmosphere. Problems of nuclear meteorology, I. L. Karol and S. G. Malakhov, Eds., United States Atomic Energy Commission, Division of Technical Information Rep. AEC-TR-6128, 92–124.

    • Search Google Scholar
    • Export Citation
  • Kirichenko, L. V., 1970: Radon exhalation from vast areas according to vertical distributions of its short-lived decay products. J. Geophys. Res., 75 , 36393649.

    • Search Google Scholar
    • Export Citation
  • Koch, D., G. A. Schmidt, and C. V. Field, 2006: Sulfur, sea salt, and radionuclide aerosols in GISS ModelE. J. Geophys. Res., 111 , D06206. doi:10.1029/2004jd005550.

    • Search Google Scholar
    • Export Citation
  • Kritz, M. A., J-C. Le Roulley, and E. F. Danielsen, 1990: The China Clipper—Fast advective transport of radon-rich air from the Asian boundary layer to the upper troposphere near California. Tellus, 42B , 4661.

    • Search Google Scholar
    • Export Citation
  • Kritz, M. A., S. W. Rosner, K. K. Kelly, M. Loewenstein, and K. R. Chan, 1993: Radon measurements in the lower tropical stratosphere: Evidence for rapid vertical transport and dehydration of tropospheric air. J. Geophys. Res., 98 , 87258736.

    • Search Google Scholar
    • Export Citation
  • Kritz, M. A., S. W. Rosner, and D. Z. Stockwell, 1998: Validation of an off-line three-dimensional chemical transport model using observed radon profiles: 1. Observations. J. Geophys. Res., 103 , 84258432.

    • Search Google Scholar
    • Export Citation
  • Lambert, G., G. Polian, J. Sanak, B. Ardouin, A. Buisson, A. Jegou, and J-C. Le Roulley, 1982: Cycle du radon et de ses descentants: Application à l’étude des échanges troposphère-stratosphère. Ann. Geophys., 38 , 497531.

    • Search Google Scholar
    • Export Citation
  • Lambert, G., J-C. Le Roulley, and M. A. Kritz, 1990: Box model for radon transfers into the stratosphere. Tellus, 42B , 135141.

  • Larson, R. E., 1974: Radon profiles over Kilauea, the Hawaiian Islands, and Yukon Valley snow cover. Pure Appl. Geophys., 112 , 204208.

    • Search Google Scholar
    • Export Citation
  • Larson, R. E., and W. A. Hoppel, 1973: Radon-222 measurements below 4 km as related to atmospheric convection. Pure Appl. Geophys., 105 , 900906.

    • Search Google Scholar
    • Export Citation
  • Lee, H. N., and R. J. Larson, 1997: Vertical diffusion in the lower atmosphere using aircraft measurements of 222Rn. J. Appl. Meteor., 36 , 12621270.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and W. T. Pennell, 1976: The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure. Mon. Wea. Rev., 104 , 524539.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and J. S. Chang, 1996: A three-dimensional global episodic tracer transport model: 1. Evaluation of its transport processes by radon 222 simulations. J. Geophys. Res., 101 , 2593125947.

    • Search Google Scholar
    • Export Citation
  • Lin, X., F. Zaucker, E-Y. Hsie, M. Trainer, and S. A. McKeen, 1996: Radon-222 simulations as a test of a three-dimensional regional transport model. J. Geophys. Res., 101 , 2916529177.

    • Search Google Scholar
    • Export Citation
  • Liu, S. C., J. R. McAfee, and R. J. Cicerone, 1984: Radon-222 and tropospheric vertical transport. J. Geophys. Res., 89 , 72917297.

  • Machta, L., 1963: Radon and other radioisotopes in the atmosphere. J. Geophys. Res., 68 , 3815.

  • Machta, L., and H. F. J. Lucas, 1962: Radon in the upper atmosphere. Science, 135 , 296299.

  • Mahrt, L., 1976: Mixed layer moisture structure. Mon. Wea. Rev., 104 , 14031407.

  • Miranda, H. A. J., 1957: The radon content of the atmosphere in the New York area as measured with an improved technique. J. Atmos. Terr. Phys., 11 , 272283.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., and J. C. Wyngaard, 1984: Statistics of conservative scalars in the convective boundary layer. J. Atmos. Sci., 41 , 31613169.

    • Search Google Scholar
    • Export Citation
  • Moore, H. E., S. E. Poet, and E. A. Martell, 1973: 222Rn, 210Pb, 210Bi, and 210Po profiles and aerosol residence times versus altitude. J. Geophys. Res., 78 , 70657075.

    • Search Google Scholar
    • Export Citation
  • Moore, H. E., S. E. Poet, and E. A. Martell, 1977: Vertical profiles on 222Rn and its long-lived daughters over the eastern Pacific. Environ. Sci. Technol., 11 , 12071210.

    • Search Google Scholar
    • Export Citation
  • Moses, H., A. F. Stehney, and H. F. J. Lucas, 1960: The effect of meteorological variables upon the vertical and temporal distributions of atmospheric radon. J. Geophys. Res., 65 , 12231238.

    • Search Google Scholar
    • Export Citation
  • Nazarov, L. E., A. F. Kuzenkov, S. G. Malakhov, L. A. Volokitina, Y. I. Gaziyev, and A. S. Vasil’yev, 1970: Radioactive aerosol distribution in the middle and upper troposphere over the USSR in 1963–1968. J. Geophys. Res., 75 , 35753588.

    • Search Google Scholar
    • Export Citation
  • Negro, V. C., N. Y. Chiu, R. J. Larsen, S. B. Wurms, and C. Breheny, 1996: Continued testing and evaluation of the Radgrabber. USDOE Rep. EML-580, 153 pp.

    • Search Google Scholar
    • Export Citation
  • Nguyen, B. C., G. Lambert, G. Polian, and J. P. Jacquin, 1967: Radon-222 vertical profiles comparison from 0 to 4400 m over Atlantic Ocean (in French). C. R. Acad., 265B , 428433.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and M. A. LeMone, 1980: The fair weather boundary layer in GATE: The relationship of subcloud fluxes and structure to the distribution and enhancement of cumulus clouds. J. Atmos. Sci., 37 , 20512067.

    • Search Google Scholar
    • Export Citation
  • Ötles, Z., and J. A. Young, 1996: Influence of shallow cumuli on subcloud turbulence fluxes analyzed from aircraft data. J. Atmos. Sci., 53 , 665676.

    • Search Google Scholar
    • Export Citation
  • Pereira, E. B., D. J. R. Nordemann, S. C. Wofsy, and S. Trumbore, 1988: Vertical radon concentration profiles over the Brazilian Amazon Basin during the wet season. Eos, Trans. Amer. Geophys. Union, 69 (Spring Meeting Suppl.), Abstract A52-03.

    • Search Google Scholar
    • Export Citation
  • Perry, K. D., T. A. Cahill, R. C. Schnell, and J. M. Harris, 1999: Long-range transport of anthropogenic aerosols to the National Oceanic and Atmospheric Administration baseline station at Mauna Loa Observatory, Hawaii. J. Geophys. Res., 104 , 1852118533.

    • Search Google Scholar
    • Export Citation
  • Polian, G., G. Lambert, B. Ardouin, and A. Jegou, 1986: Long-range transport of continental radon in subantarctic and arctic areas. Tellus, 38 , 178189.

    • Search Google Scholar
    • Export Citation
  • Puri, K., G. S. Dietachmayer, G. A. Mills, N. E. Davidson, R. A. Bowen, and L. W. Logan, 1998: The new BMRC limited area prediction system, LAPS. Aust. Meteor. Mag., 47 , 203223.

    • Search Google Scholar
    • Export Citation
  • Ramonet, M., J-C. Le Roulley, P. Bousquet, and P. Monfray, 1996: Radon-222 measurements during the Tropoz II campaign and comparison with a global atmospheric transport model. J. Atmos. Chem., 23 , 107136.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., and Coauthors, 2000: A comparison of scavenging and deposition processes in global models: Results from the WCRP Cambridge Workshop of 1995. Tellus, 52B , 10251056.

    • Search Google Scholar
    • Export Citation
  • Schery, S. D., and S. Huang, 2004: An estimate of the global distribution of radon emissions from the ocean. Geophys. Res. Lett., 31 , L19104. doi:10.1029/2004GL021051.

    • Search Google Scholar
    • Export Citation
  • Schmidt, M., R. Graul, H. Sartorius, and I. Levin, 1996: Carbon dioxide and methane in continental Europe: A climatology and 222Radon-based emission estimates. Tellus, 48 , 457473.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1985: A fair-weather cumulus cloud classification scheme for mixed-layer studies. J. Climate Appl. Meteor., 24 , 4956.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Turekian, K. K., Y. Nozaki, and L. K. Benninger, 1977: Geochemistry of atmospheric radon and radon products. Annu. Rev. Earth Planet. Sci., 5 , 227255.

    • Search Google Scholar
    • Export Citation
  • Wexler, H., L. Machta, D. H. Pock, and F. D. White, 1956: Atomic energy and meteorology. Proc. First Int. Conf. on the Peaceful Uses of Atomic Energy, Geneva, Switzerland, International Atomic Energy Agency, 333–344.

    • Search Google Scholar
    • Export Citation
  • Wigand, A., and F. Wenk, 1928: Der Gehalt der Luft an Radium-Emanation, nach Messungen bei Flugzeugaufstiegen. Ann. Lpz. Phys., 86 , 657686.

    • Search Google Scholar
    • Export Citation
  • Wilkening, M. H., 1956: Variation of natural radioactivity in the atmosphere with altitude. Trans. Amer. Geophys. Union, 37 , 177180.

  • Wilkening, M. H., 1970: Radon 222 concentrations in the convective patterns of a mountain environment. J. Geophys. Res., 75 , 17331740.

    • Search Google Scholar
    • Export Citation
  • Wilkening, M. H., and G. W. Paltridge, 1967: Radon sampling technique for the study of orographic cumuli. Trans. Amer. Geophys. Union, 48 , 105.

    • Search Google Scholar
    • Export Citation
  • Williams, A. G., S. D. Chambers, W. Zahorowski, J. Crawford, K. Matsumoto, and M. Uematsu, 2009: Estimating the Asian radon flux density and its latitudinal gradient in winter using ground-based radon observations at Sado Island. Tellus, 61B , 732746.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., and R. A. Brost, 1984: Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci., 41 , 102112.

    • Search Google Scholar
    • Export Citation
  • Zahorowski, W., and S. Whittlestone, 1996: A fast portable emanometer for field measurements of radon and thoron flux. Radiat. Prot. Dosimetry, 67 , 109120.

    • Search Google Scholar
    • Export Citation
  • Zahorowski, W., and S. Whittlestone, 1999: Radon database 1987–1996: A review. Baseline Atmospheric Program (Australia) 1996, J. L. Gras et al., Eds., Bureau of Meteorology and CSIRO Atmospheric Research, 71–80.

    • Search Google Scholar
    • Export Citation
  • Zahorowski, W., S. D. Chambers, and A. Henderson-Sellers, 2004: Ground based radon-222 observations and their application to atmospheric studies. J. Environ. Radioact., 76 , 333.

    • Search Google Scholar
    • Export Citation
  • Zahorowski, W., and Coauthors, 2005: Radon-222 in boundary layer and free tropospheric continental outflow events at three ACE-Asia sites. Tellus, 57 , 124140.

    • Search Google Scholar
    • Export Citation
  • Zahorowski, W., A. G. Williams, A. T. Vermeulen, S. D. Chambers, J. Crawford, and O. Sisoutham, 2008: Diurnal boundary layer mixing patterns characterised by radon-222 gradient observations at Cabauw. Extended Abstracts, 18th Conf. on Boundary Layers and Turbulence, Stockholm, Sweden, Amer. Meteor. Soc., 9B.2. [Available online at http://ams.confex.com/ams/18BLT/techprogram/paper_139978.htm].

    • Search Google Scholar
    • Export Citation
  • Zaucker, F., P. H. Daum, U. Wetterauer, C. Berkowitz, B. Kromer, and W. S. Broecker, 1996: Atmospheric 222Rn measurements during the 1993 NARE intensive. J. Geophys. Res., 101 , 2914929164.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 658 196 34
PDF Downloads 439 136 21