Equatorial Waves in the Upper Troposphere and Lower Stratosphere Forced by Latent Heating Estimated from TRMM Rain Rates

Jung-Hee Ryu Department of Atmospheric and Oceanic Sciences, University of Colorado, and NWRA, Colorado Research Associates Division, Boulder, Colorado

Search for other papers by Jung-Hee Ryu in
Current site
Google Scholar
PubMed
Close
,
M. Joan Alexander Department of Atmospheric and Oceanic Sciences, University of Colorado, and NWRA, Colorado Research Associates Division, Boulder, Colorado

Search for other papers by M. Joan Alexander in
Current site
Google Scholar
PubMed
Close
, and
David A. Ortland Northwest Research Associates, Redmond, Washington

Search for other papers by David A. Ortland in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Equatorial atmospheric waves in the upper troposphere and lower stratosphere (UTLS), excited by latent heating, are investigated by using a global spectral model. The latent heating profiles are derived from the 3-hourly Tropical Rainfall Measuring Mission (TRMM) rain rates, which include both convective- and stratiform-type profiles. The type of heating profile is determined based on an intensity of the surface rain rate. Latent heating profiles over stratiform rain regions, estimated from the TRMM Precipitation Radar (PR) product, are applied to derive the stratiform-type latent heating profiles from the gridded rain rate data. Monthly zonal-mean latent heating profiles derived from the rain rates appear to be reasonably comparable with the TRMM convective/stratiform heating product.

A broad spectrum of Kelvin, mixed Rossby–gravity (MRG), equatorial Rossby (ER), and inertia–gravity waves are generated in the model. Particularly, equatorial waves (Kelvin, ER, and MRG waves) of zonal wavenumbers 1–5 appear to be dominant in the UTLS. In the wavenumber–frequency domain, the equatorial waves have prominent spectral peaks in the range of 12–200 m of the equivalent depth, while the spectral peaks of the equatorial waves having shallower equivalent depth (<50 m) increase in the case where stratiform-type heating is included. These results imply that the stratiform-type heating might be relevant for the shallower equivalent depth of the observed convectively coupled equatorial waves.

The horizontal and vertical structures of the simulated equatorial waves (Kelvin, ER, and MRG waves) are in a good agreement with the equatorial wave theory and observed wave structure. In particular, comparisons of the simulated Kelvin waves and the High Resolution Dynamics Limb Sounder (HIRDLS) satellite observation are discussed.

Corresponding author address: Jung-Hee Ryu, Texas Tech University, MS 1053, Lubbock, TX 79409. E-mail: jung-hee.ryu@ttu.edu

Abstract

Equatorial atmospheric waves in the upper troposphere and lower stratosphere (UTLS), excited by latent heating, are investigated by using a global spectral model. The latent heating profiles are derived from the 3-hourly Tropical Rainfall Measuring Mission (TRMM) rain rates, which include both convective- and stratiform-type profiles. The type of heating profile is determined based on an intensity of the surface rain rate. Latent heating profiles over stratiform rain regions, estimated from the TRMM Precipitation Radar (PR) product, are applied to derive the stratiform-type latent heating profiles from the gridded rain rate data. Monthly zonal-mean latent heating profiles derived from the rain rates appear to be reasonably comparable with the TRMM convective/stratiform heating product.

A broad spectrum of Kelvin, mixed Rossby–gravity (MRG), equatorial Rossby (ER), and inertia–gravity waves are generated in the model. Particularly, equatorial waves (Kelvin, ER, and MRG waves) of zonal wavenumbers 1–5 appear to be dominant in the UTLS. In the wavenumber–frequency domain, the equatorial waves have prominent spectral peaks in the range of 12–200 m of the equivalent depth, while the spectral peaks of the equatorial waves having shallower equivalent depth (<50 m) increase in the case where stratiform-type heating is included. These results imply that the stratiform-type heating might be relevant for the shallower equivalent depth of the observed convectively coupled equatorial waves.

The horizontal and vertical structures of the simulated equatorial waves (Kelvin, ER, and MRG waves) are in a good agreement with the equatorial wave theory and observed wave structure. In particular, comparisons of the simulated Kelvin waves and the High Resolution Dynamics Limb Sounder (HIRDLS) satellite observation are discussed.

Corresponding author address: Jung-Hee Ryu, Texas Tech University, MS 1053, Lubbock, TX 79409. E-mail: jung-hee.ryu@ttu.edu
Save
  • Alexander, M. J., and D. A. Ortland, 2010: Equatorial waves in High Resolution Dynamics Limb Sounder (HIRDLS) data. J. Geophys. Res., 115, D24111, doi:10.1029/2010JD014782.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179230.

  • Bessafi, M., and M. C. Wheeler, 2006: Modulation of south Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134, 638656.

    • Search Google Scholar
    • Export Citation
  • Boehm, M., and S. Lee, 2003: The implications of tropical Rossby waves for tropical tropopause cirrus formation and for the equatorial upwelling of Brewer–Dobson circulation. J. Atmos. Sci., 60, 247261.

    • Search Google Scholar
    • Export Citation
  • Canziani, P. O., and J. R. Holton, 1998: Kelvin waves and the quasibiennial oscillation: An observational analysis. J. Geophys. Res., 103, 31 50931 521.

    • Search Google Scholar
    • Export Citation
  • Chan, S. C., and S. Nigam, 2009: Residual diagnosis of diabatic heating from ERA-40 and NCEP reanalyses: Intercomparisons with TRMM. J. Climate, 22, 414428.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and R. Huang, 2009: Interannual variations in mixed Rossby–gravity waves and their impacts on tropical cyclogenesis over the western North Pacific. J. Climate, 22, 535549.

    • Search Google Scholar
    • Export Citation
  • Cho, H.-K., K. Bowman, and G. R. North, 2004: Equatorial waves including the Madden–Julian oscillation in TRMM rainfall and OLR data. J. Climate, 17, 43874406.

    • Search Google Scholar
    • Export Citation
  • Chong, M., and D. Hauser, 1989: A tropical squall line observed during the COPT 81 experiment in West Africa. Part II: Water budget. Mon. Wea. Rev., 117, 728744.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102, 26 05326 076.

  • Ern, M., and P. Preusse, 2009a: Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere. Geophys. Res. Lett., 36, L21801, doi:10.1029/2009GL040493.

    • Search Google Scholar
    • Export Citation
  • Ern, M., and P. Preusse, 2009b: Wave fluxes of equatorial Kelvin waves and QBO zonal wind forcing derived from SABER and ECMWF temperature space–time spectra. Atmos. Chem. Phys., 9, 39573986.

    • Search Google Scholar
    • Export Citation
  • Fleming, E. L., S. Chandra, J. J. Barnett, and M. Corney, 1990: Zonal mean temperature, pressure, zonal wind, and geopotential height as functions of latitude. Adv. Space Res., 10, 1159.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and J. L. McBride, 1989: The vertical distribution of heating in AMEX and GATE cloud clusters. J. Atmos. Sci., 46, 34643478.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417.

  • Frierson, D. M., 2007: Convectively coupled Kelvin waves in an idealized moist general circulation model. J. Atmos. Sci., 64, 20762090.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., and R. A. Houze Jr., 1983: Water budget of a mesoscale convective system in the tropics. J. Atmos. Sci., 40, 18351850.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res., 113, D18114, doi:10.1029/2008JD009920.

    • Search Google Scholar
    • Export Citation
  • Gille, J., and Coauthors, 2008: High Resolution Dynamics Limb Sounder (HIRDLS): Experiment overview, recovery, and validation of initial temperature data. J. Geophys. Res., 113, D16S43, doi:10.1029/2007JD008824.

    • Search Google Scholar
    • Export Citation
  • Grimsdell, A. W., M. J. Alexander, P. T. May, and L. Hoffmann, 2010: Model study of waves generated by convection with direct validation via satellite. J. Atmos. Sci., 67, 16171631.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. Wheeler, 2008: Some space–time spectral analyses of tropical convection and planetary-scale waves. J. Atmos. Sci., 65, 29362948.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., and C. B. Leovy, 1988: Estimation of the Kelvin wave contribution to the semiannual oscillation. J. Atmos. Sci., 45, 14621475.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: Introduction to Dynamic Meteorology. Academic Press, 511 pp.

  • Holton, J. R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 10761080.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and H.-C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 22002208.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and W. H. Wehrbein, 1980: A numerical model of the zonal mean circulation of the middle atmosphere. Pure Appl. Geophys., 118, 284306.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396410.

  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., C.-P. Cheng, C. A. Leary, and J. F. Gamache, 1980: Diagnosis of cloud mass and heat fluxes from radar and synoptic data. J. Atmos. Sci., 37, 754773.

    • Search Google Scholar
    • Export Citation
  • Ji, Y., 2006: Validation of diurnal cycle and intra-seasonal variability of TRMM satellite rainfall. PIERS Online, 2, 628632.

  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982.

    • Search Google Scholar
    • Export Citation
  • Lin, J., B. E., Mapes, M. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61, 296309.

    • Search Google Scholar
    • Export Citation
  • Lin, J., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690.

    • Search Google Scholar
    • Export Citation
  • Lin, J., M.-I. Lee, D. Kim, I.-S. Kang, and D. M. Frierson, 2008: The impacts of convective parameterization and moisture triggering on AGCM-simulated convectively coupled equatorial waves. J. Climate, 21, 883909.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Norton, W. A., 2006: Tropical wave driving of the annual cycle in tropical tropopause temperature. Part II: Model results. J. Atmos. Sci., 63, 14201431.

    • Search Google Scholar
    • Export Citation
  • Pandya, R., D. Durran, and C. Bretherton, 1993: Comments on “Thermally forced gravity waves in an atmosphere at rest.” J. Atmos. Sci., 50, 40974101.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2005: Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. J. Geophys. Res., 110, D03102, doi:10.1029/2004JD005006.

    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and R. Garcia, 2000: The excitation of equatorial waves by deep convection in the NCAR Community Climate Model (CCM3). J. Atmos. Sci., 57, 34613487.

    • Search Google Scholar
    • Export Citation
  • Ryu, J.-H., and S. Lee, 2010: Effect of tropical waves on the tropical tropopause transition layer upwelling. J. Atmos. Sci., 67, 31303148.

    • Search Google Scholar
    • Export Citation
  • Ryu, J.-H., S. Lee, and S.-W. Son, 2008: Vertically propagating Kelvin waves and tropical tropopause variability. J. Atmos. Sci., 65, 18171837.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and R. R. Garcia, 1987: Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior. J. Atmos. Sci., 44, 458498.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and J. C. McWilliams, 1995: Multiple equilibria, natural variability, and climate transitions in an idealized ocean–atmosphere model. J. Climate, 8, 22962323.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze, 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze, and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar of the tropical tropopause layer: A cloud-resolving model study. J. Atmos. Sci., 61, 13411358.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W.-K. Tao, and D. E. Johnsson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43, 10951113.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12, 325357.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. Kiladis, 2003: The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60, 16551668.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433448.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., S. Lang, X. Zeng, S. Shige, and Y. Takayabu, 2010: Relating convective and stratiform rain to latent heating. J. Climate, 23, 18741893.

    • Search Google Scholar
    • Export Citation
  • Tindall, J. C., J. Thuburn, and E. J. Highwood, 2006: Equatorial waves in the lower stratosphere. II. Annual and interannual variability. Quart. J. Roy. Meteor. Soc., 132, 195212.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., Y. Murayama, H. Wiryosumato, S. W. B. Harijono, and S. Kato, 1994: Radiosonde observations of equatorial atmosphere dynamics over Indonesia. I. Equatorial waves and diurnal tides. J. Geophys. Res., 99, 10 49110 505.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and V. E. Kousky, 1968: Observational evidence of Kelvin waves in the tropical stratosphere. J. Atmos. Sci., 25, 900907.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., D. A. Marks, E. Amitai, D. S. Silberstein, B. L. Fisher, A. Tokay, J. Wang, and J. L. Pippitt, 2005: Ground validation for the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Oceanic Technol., 22, 365380.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 1999: Moisture budget analysis of TOGA COARE area using SSM/I-retrieved latent heating and large-scale Q2 estimates. J. Atmos. Oceanic Technol., 16, 633655.

    • Search Google Scholar
    • Export Citation
  • Yang, S., W. Olson, J.-J. Wang, T. L. Bell, E. A. Smith, and C. D. Kummerow, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part II: Evaluation of estimates using independent data. J. Appl. Meteor. Climatol., 45, 721739.

    • Search Google Scholar
    • Export Citation
  • Zhou, X. L., and J. R. Holton, 2002: Intraseasonal variations of tropical cold-point tropopause temperature. J. Atmos. Sci., 15, 14601473.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 243 66 7
PDF Downloads 151 48 3