Microphysical Structure of the Marine Boundary Layer under Strong Wind and Spray Formation as Seen from Simulations Using a 2D Explicit Microphysical Model. Part I: The Impact of Large Eddies

J. Shpund Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by J. Shpund in
Current site
Google Scholar
PubMed
Close
,
M. Pinsky Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by M. Pinsky in
Current site
Google Scholar
PubMed
Close
, and
A. Khain Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by A. Khain in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effects of large eddies (LE) on the marine boundary layer (MBL) microphysics and thermodynamics is investigated using a 2D Lagrangian model with spectral bin microphysics including effects of sea spray. The 600 m × 400 m MBL computational area is covered by 3750 adjacent interacting Lagrangian parcels moving in a turbulent-like flow. A turbulent-like velocity field is designed as a sum of a high number of harmonics with random time-dependent amplitudes and different wavelengths including large eddies with scales of several hundred meters. The model explicitly calculates diffusion growth/evaporation, collisions, and sedimentation of droplets forming both as sea spray droplets and background aerosols, as well as aerosol masses within droplets. The turbulent mixing between parcels is explicitly taken into account. Sea spray generation is determined by a source function depending on the background wind speed assumed in the simulations to be equal to 20 m s−1. The results of simulations obtained by taking into account the effects of LE are compared to those obtained under the assumption that the vertical transport of droplets and passive scalars is caused by small-scale turbulent diffusion. Small-scale turbulence diffusion taken alone leads to an unrealistic MBL structure. Nonlocal mixing of the MBL caused by LE leads to the formation of a well-mixed MBL with a vertical structure close to the observed one. LE lead to an increase in the sensible and latent heat surface fluxes by 50%–100% and transport a significant amount of large spray droplets upward. Microphysical processes lead to formation of spray-induced drizzling clouds with cloud base near the 200-m level.

Corresponding author address: Prof. Alexander Khain, Department of the Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel. E-mail: khain@vms.huji.ac.il

Abstract

The effects of large eddies (LE) on the marine boundary layer (MBL) microphysics and thermodynamics is investigated using a 2D Lagrangian model with spectral bin microphysics including effects of sea spray. The 600 m × 400 m MBL computational area is covered by 3750 adjacent interacting Lagrangian parcels moving in a turbulent-like flow. A turbulent-like velocity field is designed as a sum of a high number of harmonics with random time-dependent amplitudes and different wavelengths including large eddies with scales of several hundred meters. The model explicitly calculates diffusion growth/evaporation, collisions, and sedimentation of droplets forming both as sea spray droplets and background aerosols, as well as aerosol masses within droplets. The turbulent mixing between parcels is explicitly taken into account. Sea spray generation is determined by a source function depending on the background wind speed assumed in the simulations to be equal to 20 m s−1. The results of simulations obtained by taking into account the effects of LE are compared to those obtained under the assumption that the vertical transport of droplets and passive scalars is caused by small-scale turbulent diffusion. Small-scale turbulence diffusion taken alone leads to an unrealistic MBL structure. Nonlocal mixing of the MBL caused by LE leads to the formation of a well-mixed MBL with a vertical structure close to the observed one. LE lead to an increase in the sensible and latent heat surface fluxes by 50%–100% and transport a significant amount of large spray droplets upward. Microphysical processes lead to formation of spray-induced drizzling clouds with cloud base near the 200-m level.

Corresponding author address: Prof. Alexander Khain, Department of the Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel. E-mail: khain@vms.huji.ac.il
Save
  • Andreae, M. O., and D. Rosenfeld, 2008: Aerosol–cloud–precipitation interactions. Part 1: The nature and sources of cloud-active aerosols. Earth Sci. Rev., 89, 1341.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 1995: The temperature of evaporating sea spray droplets. J. Atmos. Sci., 52, 852862.

  • Andreas, E. L, 1998: A new sea spray generation function for wind speed up to 32 m s−1. J. Phys. Oceanogr., 28, 21752184.

  • Bao, J.-W., C. W. Fairall, and S. A. Michelson, 2007: The first semiannual report of the project entitled “Evaluation and Improvement of Spray-Modified Air–Sea Enthalpy and Momentum Flux Parameterizations for Operational Hurricane Prediction.” Tropical Prediction Center, 23 pp.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., C. W. Fairall, and S. A. Michelson, 2009: The final report of the project entitled “Evaluation and Improvement of Spray-Modified Air–Sea Enthalpy and Momentum Flux Parameterizations for Operational Hurricane Prediction.” Tropical Prediction Center, 34 pp. [Available online at http://origin.www.nhc.noaa.gov/jht/07-09reports/final_Bao_JHT09.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bott, A., 1989: A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon. Wea. Rev., 117, 10061015.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1966: A scheme for numerical integration of the equations of motion on an irregular grid free of nonlinear instability. Mon. Wea. Rev., 94, 3940.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., S. R. Owens, and J. C. Zhou, 2006: An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere. J. Geophys. Res., 111, D06202, doi:10.1029/2005JD006565.

    • Search Google Scholar
    • Export Citation
  • Davidson, K. L., and L. Schutz, 1983: Observational results on the influence of surface layer stability and inversion entrainment on surface layer marine aerosol number density. Opt. Eng., 22, 4549.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci., 64, 11031115.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and C. W. Fairall, 1994: Spray droplet modeling. 1. Lagrangian model simulation of the turbulent transport of evaporating droplets. J. Geophys. Res., 99, 25 29525 311.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., S. Anquetin, P. G. Mestayer, and J. F. Sini, 1996: Spray droplet modeling. 2. An interactive Eulerian–Lagrangian model of evaporating spray droplets. J. Geophys. Res., 101, 12791293.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. B. Edson, and M. A. Miller, 1990: Heat fluxes, whitecaps, and sea spray. Surface Waves and Fluxes, Vol. 1, G. L. Geernaert and W. J. Plant, Eds., Kluwer, 173–208.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2, 121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., M. L. Banner, W. L. Peirson, W. Asher, and R. P. Morison, 2009: Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res., 114, C10001, doi:10.1029/2008JC004918.

    • Search Google Scholar
    • Export Citation
  • Foster, R. C., 2005: Why rolls are prevalent in the hurricane boundary layer. J. Atmos. Sci., 62, 26472661.

  • French, J. R., W. M. Drennan, J. A. Zhang, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1994: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Ginis, I., A. Khain, and E. Morozovsky, 2004: Effects of large eddies on the structure of the marine boundary layer under strong wind conditions. J. Atmos. Sci., 61, 30493063.

    • Search Google Scholar
    • Export Citation
  • Gong, S. L., 2003: A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Global Biogeochem. Cycles, 17, 1097, doi:10.1029/2003GB002079.

    • Search Google Scholar
    • Export Citation
  • Ingel, L. Kh., 2011: Effects of spray on dynamics of surface layer under strong winds. Atmos. Oceanic Phys., 47, 19.

  • Ivanov, V. N., and A. P. Khain, 1975: On dry and moist cellular convection in the atmosphere. Atmos. Oceanic Phys., 11, 12111219.

  • Ivanov, V. N., and A. P. Khain, 1976a: On characteristic values of Rayleigh numbers during the development of cellular convection in turbulent atmosphere. Atmos. Oceanic Phys., 12, 2328.

    • Search Google Scholar
    • Export Citation
  • Ivanov, V. N., and A. P. Khain, 1976b: On the maximum principle and the preferable wave number in dry and moist cellular convection. Atmos. Oceanic Phys., 12, 325.

    • Search Google Scholar
    • Export Citation
  • Kepert, J., C. W. Fairall, and J. W. Bao, 1999: Modelling the interaction between the atmospheric boundary layer and evaporating sea spray droplets. Air–Sea Exchange: Physics, Chemistry, and Dynamics, G. L. Geernaert, Ed., Kluwer Academic, 363–409.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and L. Kh. Ingel, 1988: A numerical model of the atmospheric boundary layer above the ocean in the presence of convection. Atmos. Oceanic Phys., 24, 2432.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and L. Kh. Ingel, 1995: Numerical modeling of interaction of a nonstationary divergent flow with convective processes in the boundary layer over the ocean. Atmos. Oceanic Phys., 31, 496506.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., M. G. Yarmolinskaya, and L. Kh. Ingel, 1986: Numerical modeling of interaction of convective and large-scale processes in the atmospheric boundary layer with the formation of a temperature inversion. Atmos. Oceanic Phys., 22, 987993.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., M. Pinsky, L. Magariz, O. Krasnov, and H. W. J. Russchenberg, 2008: Combined observational and model investigations of the Z–LWC relationship in stratocumulus clouds. J. Appl. Meteor. Climatol., 47, 591606.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., 2006: On the effect of sea drops on the atmospheric boundary layer. J. Geophys. Res., 111, C07020, doi:10.1029/2005JC002970.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1973: The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci., 30, 10771091.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., J. C. Wyngaard, and W. T. Pennell, 1980: Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J. Atmos. Sci., 37, 13131326.

    • Search Google Scholar
    • Export Citation
  • Lewis, E. R., and S. E. Schwartz, 2004: Sea Salt Aerosol Production: Mechanisms, Methods, Measurements and Models—A Critical Review. Geophys. Monogr., Vol. 152, Amer. Geophys. Union, 413 pp.

    • Search Google Scholar
    • Export Citation
  • Lorsolo, S., J. L. Schroender, P. Dodge, and F. Marks, 2008: An observational study of hurricane boundary layer small-scale coherent structures. Mon. Wea. Rev., 136, 28712893.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., D. H. Lenschow, D. Leon, and G. Vali, 2005: Turbulence measurements in marine stratocumulus with airborne Doppler radar. Quart. J. Roy. Meteor. Soc., 131, 20632080.

    • Search Google Scholar
    • Export Citation
  • Magaritz, L., M. Pinsky, O. Krasnov, and A. Khain, 2009: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part II: Lucky parcels in non-mixing limit. J. Atmos. Sci., 66, 781805.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., 1998: Air–sea exchange of heat in the presence of wind waves and spray. J. Geophys. Res., 103, 11371152.

  • Makin, V. K., 2005: A note on drag of the sea surface at hurricane winds. Bound.-Layer Meteor., 115, 169176.

  • Mårtensson, E. M., E. D. Nilsson, G. de Leeuw, L. H. Cohen, and H. C. Hansson, 2003: Laboratory simulations and parameterization of the primary marine aerosol production. J. Geophys. Res., 108, 4297, doi:10.1029/2002JD002263.

    • Search Google Scholar
    • Export Citation
  • Mestayer, P. G., A. M. J. Van Eijk, G. De Leeuw, and B. Tranchant, 1996: Numerical simulation of the dynamics of sea spray over the waves. J. Geophys. Res., 101, 20 77120 797.

    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., D. E. Spiel, and K. L. Davidson, 1986: A model of marine aerosol generation via whitecaps and wave disruption. Oceanic Whitecaps and Their Role in Air–Sea Exchange Processes, E. C. Monahan and G. MacNiocaill, Eds., Reidel, 167–174.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2009: A Lagrangian stochastic model for heavy particle dispersion in the atmospheric marine boundary layer. Bound.-Layer Meteor., 130, 229247.

    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., and G. de Leeuw, 2007: Marine aerosol production: A review of the current knowledge. Philos. Trans. Roy. Soc., 365A, 17531774.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., and A. P. Khain, 2002: Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Quart. J. Roy. Meteor. Soc., 128, 501533.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. P. Khain, and M. Shapiro, 2001: Collision efficiency of drops in a wide range of Reynolds numbers: Effects of pressure on spectrum evolution. J. Atmos. Sci., 58, 742764.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., L. Magaritz, A. P. Khain, O. Krasnov, and A. Sterkin, 2008: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part I: Model description and first results in nonmixing limit. J. Atmos. Sci., 65, 20642086.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. P. Khain, and L. Magaritz, 2010a: Representing turbulent mixing of non-conservative values in Eulerian and Lagrangian cloud models. Quart. J. Roy. Meteor. Soc., 136, 12281242.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., O. Krasnov, J. H. W. Russchenberg, and A. Khain, 2010b: Investigation of the turbulent structure of a cloud-capped mixed layer using Doppler radar. J. Appl. Meteor. Climatol., 49, 11701190.

    • Search Google Scholar
    • Export Citation
  • Powell, M., P. Vickery, and T. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., R. Lahav, A. Khain, and M. Pinsky, 2002: The role of sea spray in cleansing air pollution over ocean via cloud processes. Science, 297, 16671670.

    • Search Google Scholar
    • Export Citation
  • Rouault, M. P., P. G. Mestayer, and R. Schiestel, 1991: A model of evaporating spray droplet dispersion. J. Geophys. Res., 96, 71817200.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., W. R. Cotton, and G. Feingold, 1998: A critique of one- and two-dimensional models of boundary layer clouds with binned representations of droplet microphysics. Atmos. Res., 47-48, 529553.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., C. H. Moeng, and P. P. Sullivan, 1999: Large-eddy simulations of radiatively driven convection: Sensitivities to the representation of small scales. J. Atmos. Sci., 56, 39633984.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and Chemistry of Maritime Stratocumulus: DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579593.

  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 647 pp.

  • Toba, Y., 1965: On the giant sea-salt particles in the atmosphere. II: Theory of the vertical distribution in the 10-m layer over the ocean. Tellus, 17, 365382.

    • Search Google Scholar
    • Export Citation
  • Van Eijk, A. M. J., B. S. Tranchant, and P. G. Mestayer, 2001: SeaCluse: Numerical simulations of evaporating sea spray droplets. J. Geophys. Res., 106, 25732588.

    • Search Google Scholar
    • Export Citation
  • Van Zanten, M. C., B. Stevens, G. Vali, and D. H. Lenschow, 2005: Observations of drizzle in nocturnal marine stratocumulus. J. Atmos. Sci., 62, 88106.

    • Search Google Scholar
    • Export Citation
  • Xue, H., and G. Feingold, 2006: Large-eddy simulations of trade wind cumuli: Investigation of aerosol indirect effects. J. Atmos. Sci., 63, 16051622.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., 2010: Estimation of dissipative heating using low-level in situ aircraft observations in the hurricane boundary layer. J. Atmos. Sci., 67, 18531862.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., K. B. Katsaros, P. G. Black, S. Lehner, J. R. French, and W. M. Drennan, 2008: Effects of roll vortices on turbulent fluxes in the hurricane boundary layer. Bound.-Layer Meteor., 128, 173189, doi:10.1007/s10546-008-9281-2.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., W. M. Drennan, P. G. Black, and J. R. French, 2009: Turbulent structure of the hurricane boundary layer between the outer rainbands. J. Atmos. Sci., 66, 24552467.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 169 53 2
PDF Downloads 115 25 1